Henri Robain
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henri Robain.
Geochimica et Cosmochimica Acta | 1999
Priscia Oliva; Jérôme Viers; Bernard Dupré; Jean Pôl Fortuné; François Martin; Jean Jacques Braun; Daniel Nahon; Henri Robain
Abstract The effect of organic matter during soil/water interaction is still a debated issue on the controls of chemical weathering in a tropical environment. In order to study this effect in detail, we focused on the weathering processes occurring in a small tropical watershed (Nsimi-Zoetele, South Cameroon). This site offers an unique opportunity to study weathering mechanisms in a lateritic system within a small basin by coupling soil and water chemistry. The lateritic cover in this site can reach up to 40 m in depth and show two pedological distinct zones: unsaturated slope soils on the hills and/or elevated areas; and water-saturated soils in the swamp zone which represent 20% of the basin surface. The study present chemical analysis performed on water samples collected monthly from different localities between 1994–1997 and on soil samples taken during a well drilling in December 1997. The results suggest the existence of chemical and spatial heterogeneities of waters in the basin: colored waters flooding the swamp zone have much higher concentrations of both organic matter (i.e., DOC) and inorganic ions (e.g., Ca, Mg, Al, Fe, Th, Zr) than those from springs and groundwater from the hills. Nevertheless, these organic-rich waters present cation concentrations (Na, Ca, Mg, K) which are among the lowest compared to that of most world rivers. The main minerals in the soils are secondary kaolinite, iron oxi-hydroxides, quartz, and accessory minerals (e.g., zircon, rutile). We mainly focused on the mineralogical and geochemical study of the swamp zone soils and showed through SEM observations the textural characterization of weathered minerals such as kaolinite, zircon, rutile, and the secondary recrystallization of kaolinite microcrystals within the soil profile. Water chemistry and mineralogical observations suggest that hydromorphic soils of the swamp zone are responsible for almost all chemical weathering in the basin. Thus, in order to explain the increase of element concentration in the organic-rich waters, we suggest that organic acids enhance dissolution of minerals such as kaolinite, goethite, and zircon and also favors the transport of insoluble elements such as Al, Fe, Ti, Zr, and REE by chemical complexation. SiO2(aq) concentrations in these waters are above saturation with respect to quartz. Dissolution of phytholithes (amorphous silica) may be responsible for this relatively high SiO2(aq.) concentration. Al/Mg ratios obtained for the soil and the Mengong river waters show that a significant amount of Al does not leave the system due to kaolinite recrystallisation in the swamp zone soils. Geochemical data obtained for this watershed show the important contribution of vegetation and organic matter on chemical weathering in the swamp zone. Quantitatively we propose that the increasing amount in total dissolved solid (TDS) due to organic matter and vegetation effect is about 35%. In summary, this interaction between soils and waters occurs mostly in soils that are very depleted in soluble elements. Thus, the low concentration of major elements in these water is a direct consequence of the depleted nature of the soils.
Scientific Reports | 2016
Emma Rochelle-Newall; Olivier Ribolzi; Marion Viguier; Chanthamousone Thammahacksa; Norbert Silvera; Keooudone Latsachack; Rinh Pham Dinh; Piyapong Naporn; Hai Tran Sy; B. Soulileuth; Nikom Hmaimum; Pem Sisouvanh; Henri Robain; Jean-Louis Janeau; Christian Valentin; Laurie Boithias; Alain Pierret
Lack of access to clean water and adequate sanitation continues to be a major brake on development. Here we present the results of a 12-month investigation into the dynamics of Escherichia coli, a commonly used indicator of faecal contamination in water supplies, in three small, rural catchments in Laos, Thailand and Vietnam. We show that land use and hydrology are major controlling factors of E. coli concentrations in streamwater and that the relative importance of these two factors varies between the dry and wet seasons. In all three catchments, the highest concentrations were observed during the wet season when storm events and overland flow were highest. However, smaller peaks of E. coli concentration were also observed during the dry season. These latter correspond to periods of intense farming activities and small, episodic rain events. Furthermore, vegetation type, through land use and soil surface crusting, combined with mammalian presence play an important role in determining E. coli loads in the streams. Finally, sampling during stormflow revealed the importance of having appropriate sampling protocols if information on maximum contamination levels is required as grab sampling at a fixed time step may miss important peaks in E. coli numbers.
Bulletin De La Societe Geologique De France | 2002
Jean-Jacques Braun; Bernard Dupré; Jérôme Viers; Jules Remy Ndam Ngoupayou; Jean-Pierre Bedimo Bedimo; Luc Sigha-Nkamdjou; Rémi Freydier; Henri Robain; Brunot Nyeck; Jacques Bodin; Priscia Oliva; Jean-Loup Boeglin; Sébastien Stemmler; Jacques Berthelin
This paper summarizes a six-year study of the Nsimi Small Experimental Watershed (SEW), considered as a model for the South Cameroon humid tropical ecosystem. When this small watershed was set up, no similar survey of input/output hydrobiogeochemical fluxes in granitoid rocks in stable cratonic environment was available, to our knowledge, on any site close to the Equator. Moreover, this is the first attempt, world-wide, to combine different approaches in hydrology, (bio)geochemistry, mineralogy, crystallography, microbiology, geophysics and pedology. Research is based on (1) regular hydrobiogeochemical surveys in various water reservoirs of the SEW ecosystem (atmospheric deposits, groundwater and stream), (2) surveys related either to the organisation and composition of different reservoirs in the superficial layers (basement rocks, saprolite, soils) or to various hydrological, biological and geochemical processes. These surveys aim at (1) finding the main parameters involved in the chemical and physical erosion processes of the humid tropical ecosystem, (2) understanding the source of a particular chemical composition in groundwater and rivers, (3) documenting accurately the different exportation processes of chemical elements in water and soil (4) investigating the possible relation between the biodegradation of soil organic matter and the leaching of metals (especially iron) and (5) comparing the long and short term weathering rates using mass balance calculations. Another important objective of this study is to provide a new scientific and engineering database for the future development of South Cameroon, which is still nowadays a relatively preserved ecosystem. One of the major results is the essential role played by the biological cycle (vegetation and soil organic matter) in the fractionation, exportation or storage of the chemical elements in humid tropical environments. Moreover we are able to propose a model of the current erosion for this SEW from the database obtained on (1) the mineralogy of the basement rocks and the soil layers, (2) the geochemistry of the soluble and colloidal phases of waters and (3) the hydrology within the different reservoirs of the hydrosystem. This model has been confirmed and extended on a regional scale (Nyong river basin). It emphasized the behaviour of the main elements of the tropical soil layers (Fe, Al, Si), the nutrients (C, Ca, Mg, K, Sr) and specific tracers of the weathering processes either with strong mobility (Cl, Na) or on the contrary with an extremely low mobility (Zr, Th, REEs). On the SEW scale, a strong geochemical contrast occurs between the different groundwater zones flooding (1) the hill slope lateritic profiles, (2) the weathering front (interface between the saprolite and the basement rocks), and (3) the swampy zone in which the Mengong brook flows. High DOC contents (15 mg/L) but also high Fe, Th, Al, Zr contents characterize the swampy zone waters. Na and Si have mainly a deep origin (exfiltration), Al, Th, Zr and REEs are strongly linked with colloidal organic matter located in the upper horizons of the swamp. Fe has a much more complex behaviour due to its change of redox state which can be independent of organic matter complexation. Concerning the major base cations, their origin can be constrained by the biological cycle (storage or leaching). K is typically influenced by the biological cycle. During the floods, Cl has the same behaviour as K: it is one of the most striking points of this study. However, the Cl annual budget is balanced. These characteristics can be understood as the consequence of the weathering of the minerals present in the saprolite (kaolinite, goethite, zircon, Th-oxide). This chemical weathering allows the leaching of base cations and also Al and Fe. It has been demonstrated that the microbial populations of the swampy zone can play an important role in the mobilization of transition metals (e.g. Fe). This study point out the role of humic acids in the transport and the weathering budget of elements usually considered as immobile in the superficial cycle (e.g. Al, Th, Zr, Fe). It must be mentioned that worldwide the SEW and even the Nyong network waters are among the least concentrated river waters. It means that even if the organic matter plays an important role in the mobilization and transport of some elements in the swampy zone, its action is limited in term of major cation fluxes on the SEW scale. The reason invoked is that the cation fluxes are directly linked to the pedological history and the geomorphology of the watershed. The presence of thick soil layers composed of saprolite and latosol on the hillsides and of hydromorphic soils in the swampy zone with constant mineralogy lead to isolating the bedrock. The long residence time of water close to the weathering front plays a major role in preserving the parent rock from the hydro-chemical outputs. Moreover, the topsoil layers are stabilized by the vegetation cover, which limits mechanical erosion. This should be taken into account for the carbon mass balance calculation because of the wide areas on stable shields concerned by the humid tropical ecosystems. Moreover, comparison between long and short-term weathering allows us to suggest that paleo-climatic conditions did not change since the Miocene (6-20 Ma) in this part of the world.
Geochimica et Cosmochimica Acta | 2012
Jean-Jacques Braun; Jean-Christophe Maréchal; Jean Riotte; Jean-Loup Boeglin; Jean-Pierre Bedimo Bedimo; Jules Ndam Ngoupayou; Brunot Nyeck; Henri Robain; M. Sekhar; Stéphane Audry; Jérôme Viers
Agriculture, Ecosystems & Environment | 2013
Sylvain Huon; Anneke de Rouw; Philippe Bonté; Henri Robain; Christian Valentin; Irène Lefèvre; Cyril Girardin; Yann Le Troquer; Pascal Podwojewski; Oloth Sengtaheuanghoung
Journal of Hydrology | 2006
Charlotte Martin; Jérome Molenat; Chantal Gascuel-Odoux; Jean-Michel Vouillamoz; Henri Robain; Laurent Ruiz; Michael Faucheux; Luc Aquilina
The Journal "Agriculture and Forestry | 2008
Olivier Ribolzi; Juliette Cuny; P. Sengsoulichanh; Alain Pierret; Jean-Pierre Thiébaux; Sylvain Huon; Emmanuel Bourdon; Henri Robain; Oloth Sengtaheuanghoung
Environmental Earth Sciences | 2008
M. Sekhar; Jean-Jacques Braun; K. V. Hayagreeva Rao; Laurent Ruiz; Henri Robain; Jérôme Viers; Jules Rémy Ndam; Bernard Dupré
The Journal "Agriculture and Forestry | 2008
Olivier Ribolzi; Jean-Pierre Thiébaux; Emmanuel Bourdon; Jean-Pierre Bricquet; Vincent Chaplot; Sylvain Huon; Pierre Marchand; Emmanuel Mouche; Alain Pierret; Henri Robain; Anneke de Rouw; Oloth Sengtaheuanghoung; B. Soulileuth; Christian Valentin
Symposium on the Application of Geophysics to Engineering and Environmental Problems 2004 | 2004
Solenne Grellier; Roger Guérin; Christophe Aran; Henri Robain; Gérard Bellier