Henrik Bjørn Nielsen
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henrik Bjørn Nielsen.
Nature | 2013
Trine Nielsen; Junjie Qin; Edi Prifti; Falk Hildebrand; Gwen Falony; Mathieu Almeida; Manimozhiyan Arumugam; Jean-Michel Batto; Sean Kennedy; Pierre Leonard; Junhua Li; Kristoffer Sølvsten Burgdorf; Niels Grarup; Torben Jørgensen; Ivan Brandslund; Henrik Bjørn Nielsen; Agnieszka Sierakowska Juncker; Marcelo Bertalan; Florence Levenez; Nicolas Pons; Simon Rasmussen; Shinichi Sunagawa; Julien Tap; Sebastian Tims; Erwin G. Zoetendal; Søren Brunak; Karine Clément; Joël Doré; Michiel Kleerebezem; Karsten Kristiansen
We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus gut bacterial richness. They contain known and previously unknown bacterial species at different proportions; individuals with a low bacterial richness (23% of the population) are characterized by more marked overall adiposity, insulin resistance and dyslipidaemia and a more pronounced inflammatory phenotype when compared with high bacterial richness individuals. The obese individuals among the lower bacterial richness group also gain more weight over time. Only a few bacterial species are sufficient to distinguish between individuals with high and low bacterial richness, and even between lean and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities.
Cell | 2000
Morten Petersen; Peter Brodersen; Henrik Næsted; Erik Andreasson; Ursula Lindhart; Bo Johansen; Henrik Bjørn Nielsen; Michelle Lacy; Mark J. Austin; Jane E. Parker; Sashi B. Sharma; Daniel F. Klessig; Robert A. Martienssen; Ole Mattsson; Anders Boeck Jensen; John Mundy
Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) levels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern and microarray hybridizations. MPK4 kinase activity is required to repress SAR, as an inactive MPK4 form failed to complement mpk4. Analysis of mpk4 expressing the SA hydroxylase NahG and of mpk4/npr1 double mutants indicated that SAR expression in mpk4 is dependent upon elevated SA levels but is independent of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression.
Nature Biotechnology | 2014
Junhua Li; Huijue Jia; Xianghang Cai; Huanzi Zhong; Qiang Feng; Shinichi Sunagawa; Manimozhiyan Arumugam; Jens Roat Kultima; Edi Prifti; Trine Nielsen; Agnieszka Sierakowska Juncker; Chaysavanh Manichanh; Bing Chen; Wenwei Zhang; Florence Levenez; Juan Wang; Xun Xu; Liang Xiao; Suisha Liang; Dongya Zhang; Zhaoxi Zhang; Weineng Chen; Hailong Zhao; Jumana Y. Al-Aama; Sherif Edris; Huanming Yang; Jian Wang; Torben Hansen; Henrik Bjørn Nielsen; Søren Brunak
Many analyses of the human gut microbiome depend on a catalog of reference genes. Existing catalogs for the human gut microbiome are based on samples from single cohorts or on reference genomes or protein sequences, which limits coverage of global microbiome diversity. Here we combined 249 newly sequenced samples of the Metagenomics of the Human Intestinal Tract (MetaHit) project with 1,018 previously sequenced samples to create a cohort from three continents that is at least threefold larger than cohorts used for previous gene catalogs. From this we established the integrated gene catalog (IGC) comprising 9,879,896 genes. The catalog includes close-to-complete sets of genes for most gut microbes, which are also of considerably higher quality than in previous catalogs. Analyses of a group of samples from Chinese and Danish individuals using the catalog revealed country-specific gut microbial signatures. This expanded catalog should facilitate quantitative characterization of metagenomic, metatranscriptomic and metaproteomic data from the gut microbiome to understand its variation across populations in human health and disease.
The EMBO Journal | 2005
Erik Andreasson; Thomas Jenkins; Peter Brodersen; Stephan Thorgrimsen; N. Petersen; Shijiang Zhu; Jin-Long Qiu; Pernille Ollendorff Micheelsen; Anne Rocher; Morten Petersen; Mari-Anne Newman; Henrik Bjørn Nielsen; Heribert Hirt; Imre E. Somssich; Ole Mattsson; John Mundy
Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)‐dependent resistance and for activation of jasmonate (JA)‐dependent defense gene expression. To understand MPK4 signaling mechanisms, we used yeast two‐hybrid screening to identify the MPK4 substrate MKS1. Analyses of transgenic plants and genome‐wide transcript profiling indicated that MKS1 is required for full SA‐dependent resistance in mpk4 mutants, and that overexpression of MKS1 in wild‐type plants is sufficient to activate SA‐dependent resistance, but does not interfere with induction of a defense gene by JA. Further yeast two‐hybrid screening revealed that MKS1 interacts with the WRKY transcription factors WRKY25 and WRKY33. WRKY25 and WRKY33 were shown to be in vitro substrates of MPK4, and a wrky33 knockout mutant was found to exhibit increased expression of the SA‐related defense gene PR1. MKS1 may therefore contribute to MPK4‐regulated defense activation by coupling the kinase to specific WRKY transcription factors.
The EMBO Journal | 2008
Jin-Long Qiu; Berthe Katrine Fiil; Klaus Petersen; Henrik Bjørn Nielsen; Christopher J. Botanga; Stephan Thorgrimsen; Kristoffer Palma; Maria Cristina Suarez-Rodriguez; Signe Sandbech-Clausen; Jacek Lichota; Peter Brodersen; Klaus D. Grasser; Ole Mattsson; Jane Glazebrook; John Mundy; Morten Petersen
Plant and animal perception of microbes through pathogen surveillance proteins leads to MAP kinase signalling and the expression of defence genes. However, little is known about how plant MAP kinases regulate specific gene expression. We report that, in the absence of pathogens, Arabidopsis MAP kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further supported by the suppression of PAD3 expression in mpk4–wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation.
Nature | 2016
Helle Krogh Pedersen; Valborg Gudmundsdottir; Henrik Bjørn Nielsen; Tuulia Hyötyläinen; Trine Nielsen; Benjamin Anderschou Holbech Jensen; Kristoffer Forslund; Falk Hildebrand; Edi Prifti; Gwen Falony; Florence Levenez; Joël Doré; Ismo Mattila; Damian Rafal Plichta; Päivi Pöhö; Lars Hellgren; Manimozhiyan Arumugam; Shinichi Sunagawa; Sara Vieira-Silva; Torben Jørgensen; Jacob Holm; Kajetan Trošt; Karsten Kristiansen; Susanne Brix; Jeroen Raes; Jun Wang; Torben Hansen; Peer Bork; Søren Brunak; Matej Orešič
Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.
Plant Physiology | 2013
Simon Rasmussen; Pankaj Barah; Maria Cristina Suarez-Rodriguez; Simon Bressendorff; Pia Friis; Paolo Costantino; Atle M. Bones; Henrik Bjørn Nielsen; John Mundy
In Arabidopsis, the response of the majority of the genes cannot be predicted from single stress experiments and only a small fraction of the genes have potential antagonistic responses, indicating that plants have evolved to cope with combinations of stresses and therefore may be bred to endure them. Biotic and abiotic stresses limit agricultural yields, and plants are often simultaneously exposed to multiple stresses. Combinations of stresses such as heat and drought or cold and high light intensity have profound effects on crop performance and yields. Thus, delineation of the regulatory networks and metabolic pathways responding to single and multiple concurrent stresses is required for breeding and engineering crop stress tolerance. Many studies have described transcriptome changes in response to single stresses. However, exposure of plants to a combination of stress factors may require agonistic or antagonistic responses or responses potentially unrelated to responses to the corresponding single stresses. To analyze such responses, we initially compared transcriptome changes in 10 Arabidopsis (Arabidopsis thaliana) ecotypes using cold, heat, high-light, salt, and flagellin treatments as single stress factors as well as their double combinations. This revealed that some 61% of the transcriptome changes in response to double stresses were not predic from the responses to single stress treatments. It also showed that plants prioritized between potentially antagonistic responses for only 5% to 10% of the responding transcripts. This indicates that plants have evolved to cope with combinations of stresses and, therefore, may be bred to endure them. In addition, using a subset of this data from the Columbia and Landsberg erecta ecotypes, we have delineated coexpression network modules responding to single and combined stresses.
Plant Physiology | 2008
Jin-Long Qiu; Lu Zhou; Byung-Wook Yun; Henrik Bjørn Nielsen; Berthe Katrine Fiil; Klaus Petersen; Jim MacKinlay; Gary J. Loake; John Mundy; Peter C. Morris
The Arabidopsis (Arabidopsis thaliana) MKK1 and MKK2 mitogen-activated protein kinase kinases have been implicated in biotic and abiotic stress responses as part of a signaling cascade including MEKK1 and MPK4. Here, the double loss-of-function mutant (mkk1/2) of MKK1 and MKK2 is shown to have marked phenotypes in development and disease resistance similar to those of the single mekk1 and mpk4 mutants. Because mkk1 or mkk2 single mutants appear wild type, basal levels of MPK4 activity are not impaired in them, and MKK1 and MKK2 are in part functionally redundant in unchallenged plants. These findings are confirmed and extended by biochemical and molecular analyses implicating the kinases in jasmonate- and salicylate-dependent defense responses, mediated in part via the MPK4 substrate MKS1. In addition, transcriptome analyses delineate overlapping and specific effects of the kinases on global gene expression patterns demonstrating both redundant and unique functions for MKK1 and MKK2.
Nature Methods | 2013
Shinichi Sunagawa; Daniel R. Mende; Georg Zeller; Fernando Izquierdo-Carrasco; Simon A. Berger; Jens Roat Kultima; Luis Pedro Coelho; Manimozhiyan Arumugam; Julien Tap; Henrik Bjørn Nielsen; Simon Rasmussen; Søren Brunak; Oluf Pedersen; Francisco Guarner; Willem M. de Vos; Jun Wang; Junhua Li; Joël Doré; S. Dusko Ehrlich; Alexandros Stamatakis; Peer Bork
To quantify known and unknown microorganisms at species-level resolution using shotgun sequencing data, we developed a method that establishes metagenomic operational taxonomic units (mOTUs) based on single-copy phylogenetic marker genes. Applied to 252 human fecal samples, the method revealed that on average 43% of the species abundance and 58% of the richness cannot be captured by current reference genome–based methods. An implementation of the method is available at http://www.bork.embl.de/software/mOTU/.
Molecular Microbiology | 2009
Simon Rasmussen; Henrik Bjørn Nielsen; Hanne Østergaard Jarmer
The majority of all genes have so far been identified and annotated systematically through in silico gene finding. Here we report the finding of 3662 strand‐specific transcriptionally active regions (TARs) in the genome of Bacillus subtilis by the use of tiling arrays. We have measured the genome‐wide expression during mid‐exponential growth on rich (LB) and minimal (M9) medium. The identified TARs account for 77.3% of the genes as they are currently annotated and additionally we find 84 putative non‐coding RNAs (ncRNAs) and 127 antisense transcripts. One ncRNA, ncr22, is predicted to act as a translational control on cstA and an antisense transcript was observed opposite the housekeeping sigma factor sigA. Through this work we have discovered a long conserved 3′ untranslated region (UTR) in a group of membrane‐associated genes that is predicted to fold into a large and highly stable secondary structure. One of the genes having this tail is efeN, which encodes a target of the twin‐arginine translocase (Tat) protein translocation system.