Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Mundy is active.

Publication


Featured researches published by John Mundy.


The Plant Cell | 1990

Gene expression in response to abscisic acid and osmotic stress.

Karen Skriver; John Mundy

Abscisic acid (ABA) was discovered in the 1950s to be a phytohormone affecting leaf abscision and bud dormancy. It was soon characterized as a sesquiterpene derived from mevalonate although certain steps of its biosynthesis in plants are still unknown (Li and Walton, 1987; Zeevaart and Creelman, 1988). Continuing work on ABA has shown that it mediates various developmental and physiological processes that affect the agronomic performance of crop plants (Austin et al., 1982; Ramagopal, 1987). These proc? esses include embryo maturation and germination as well as the response of vegetative tissues to osmotic stress (Singh et al., 1987; Zeevaart and Creelman, 1988). ABA levels increase in tissues subjected to osmotic stress by desiccation, salt, or cold (Henson, 1984; Mohapatra et al., 1988). Under these conditions, specific genes are ex? pressed that can also be induced in unstressed tissues by the application of exogenous ABA (Singh et al., 1987; Gomez et al., 1988; Mundy and Chua, 1988). Some of these genes are also expressed during the normal embryogenic program when seeds desiccate and embryos be? come dormant (Dure et al., 1981). Although different sets of ABA-responsive genes exhibit different patterns of de? velopmental and tissue-specific expression, some of them appear to be part of a general reaction to osmotic stress. This system is a normal part of the embryogenic program but is inducible in vegetative tissues at other times in the plant life cycle. Several ABA-responsive genes have now been isolated (Baker et al., 1988; Gomez et al., 1988; Marcotte et al., 1988; Mundy and Chua, 1988; Vilardell et al., 1990; Yamaguchi-Shinozaki et al., 1990). A major goal of the research discussed below is to understand the role these genes play in osmotic stress and desiccation tolerance.


Cell | 2000

Arabidopsis MAP Kinase 4 Negatively Regulates Systemic Acquired Resistance

Morten Petersen; Peter Brodersen; Henrik Næsted; Erik Andreasson; Ursula Lindhart; Bo Johansen; Henrik Bjørn Nielsen; Michelle Lacy; Mark J. Austin; Jane E. Parker; Sashi B. Sharma; Daniel F. Klessig; Robert A. Martienssen; Ole Mattsson; Anders Boeck Jensen; John Mundy

Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) levels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern and microarray hybridizations. MPK4 kinase activity is required to repress SAR, as an inactive MPK4 form failed to complement mpk4. Analysis of mpk4 expressing the SA hydroxylase NahG and of mpk4/npr1 double mutants indicated that SAR expression in mpk4 is dependent upon elevated SA levels but is independent of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression.


Trends in Plant Science | 2002

Mitogen-activated protein kinase cascades in plants: a new nomenclature

Kazuya Ichimura; Kazuo Shinozaki; Guillaume Tena; Jen Sheen; Yves Henry; Anthony Champion; Martin Kreis; Shuqun Zhang; Heribert Hirt; Cathal Wilson; Erwin Heberle-Bors; Brian E. Ellis; Peter C. Morris; Roger W. Innes; Joseph R. Ecker; Dierk Scheel; Daniel F. Klessig; Yasunori Machida; John Mundy; Yuko Ohashi; John C. Walker

Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in eukaryotes, including yeasts, animals and plants. These protein phosphorylation cascades link extracellular stimuli to a wide range of cellular responses. In plants, MAPK cascades are involved in responses to various biotic and abiotic stresses, hormones, cell division and developmental processes. Completion of the Arabidopsis genome-sequencing project has revealed the existence of 20 MAPKs, 10 MAPK kinases and 60 MAPK kinase kinases. Here, we propose a simplified nomenclature for Arabidopsis MAPKs and MAPK kinases that might also serve as a basis for standard annotation of these gene families in all plants.


Annual Review of Plant Biology | 2010

Mitogen-Activated Protein Kinase Signaling in Plants

Maria Cristina Suarez Rodriguez; Morten Petersen; John Mundy

Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation of substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include crossinhibition, feedback control, and scaffolding. Plant MAPK cascades regulate numerous processes, including stress and hormonal responses, innate immunity, and developmental programs. Genetic analyses have uncovered several predominant MAPK components shared by several of these processes including the Arabidopsis thaliana MAPKs MPK3, 4, and 6 and MAP2Ks MKK1, 2, 4, and 5. Future work needs to focus on identifying substrates of MAPKs, and on understanding how specificity is achieved among MAPK signaling pathways.


The EMBO Journal | 2005

The MAP kinase substrate MKS1 is a regulator of plant defense responses

Erik Andreasson; Thomas Jenkins; Peter Brodersen; Stephan Thorgrimsen; N. Petersen; Shijiang Zhu; Jin-Long Qiu; Pernille Ollendorff Micheelsen; Anne Rocher; Morten Petersen; Mari-Anne Newman; Henrik Bjørn Nielsen; Heribert Hirt; Imre E. Somssich; Ole Mattsson; John Mundy

Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)‐dependent resistance and for activation of jasmonate (JA)‐dependent defense gene expression. To understand MPK4 signaling mechanisms, we used yeast two‐hybrid screening to identify the MPK4 substrate MKS1. Analyses of transgenic plants and genome‐wide transcript profiling indicated that MKS1 is required for full SA‐dependent resistance in mpk4 mutants, and that overexpression of MKS1 in wild‐type plants is sufficient to activate SA‐dependent resistance, but does not interfere with induction of a defense gene by JA. Further yeast two‐hybrid screening revealed that MKS1 interacts with the WRKY transcription factors WRKY25 and WRKY33. WRKY25 and WRKY33 were shown to be in vitro substrates of MPK4, and a wrky33 knockout mutant was found to exhibit increased expression of the SA‐related defense gene PR1. MKS1 may therefore contribute to MPK4‐regulated defense activation by coupling the kinase to specific WRKY transcription factors.


Nature | 2013

Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse

Ludovic Orlando; Aurélien Ginolhac; Guojie Zhang; Duane G. Froese; Anders Albrechtsen; Mathias Stiller; Mikkel Schubert; Enrico Cappellini; Bent Petersen; Ida Moltke; Philip L. F. Johnson; Matteo Fumagalli; Julia T. Vilstrup; Maanasa Raghavan; Thorfinn Sand Korneliussen; Anna-Sapfo Malaspinas; Josef Korbinian Vogt; Damian Szklarczyk; Christian D. Kelstrup; Jakob Vinther; Andrei Dolocan; Jesper Stenderup; Amhed M. V. Velazquez; James A. Cahill; Morten Rasmussen; Xiaoli Wang; Jiumeng Min; Grant D. Zazula; Andaine Seguin-Orlando; Cecilie Mortensen

The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560–780 thousand years before present (kyr bp). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr bp), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski’s horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0–4.5 million years before present (Myr bp), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski’s and domestic horse populations diverged 38–72 kyr bp, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski’s horse investigated. This supports the contention that Przewalski’s horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski’s and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski’s horse. Such regions could correspond to loci selected early during domestication.


Cell Death & Differentiation | 2011

Morphological classification of plant cell deaths

W.G. van Doorn; Eric P. Beers; Jeffery L. Dangl; Vernonica E. Franklin-Tong; Patrick Gallois; Ikuko Hara-Nishimura; Alan M. Jones; M Kawai-Yamada; Eric Lam; John Mundy; Luis A. J. Mur; Morten Petersen; Andrei P. Smertenko; Michael Taliansky; F Van Breusegem; T Wolpert; Ernst J. Woltering; Boris Zhivotovsky; Peter V. Bozhkov

Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term ‘apoptosis’ is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during tissue and organ formation and elimination, whereas necrosis is typically found under abiotic stress. Some examples of plant PCD cannot be ascribed to either major class and are therefore classified as separate modalities. These are PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined.


The EMBO Journal | 2008

Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus

Jin-Long Qiu; Berthe Katrine Fiil; Klaus Petersen; Henrik Bjørn Nielsen; Christopher J. Botanga; Stephan Thorgrimsen; Kristoffer Palma; Maria Cristina Suarez-Rodriguez; Signe Sandbech-Clausen; Jacek Lichota; Peter Brodersen; Klaus D. Grasser; Ole Mattsson; Jane Glazebrook; John Mundy; Morten Petersen

Plant and animal perception of microbes through pathogen surveillance proteins leads to MAP kinase signalling and the expression of defence genes. However, little is known about how plant MAP kinases regulate specific gene expression. We report that, in the absence of pathogens, Arabidopsis MAP kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further supported by the suppression of PAD3 expression in mpk4–wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation.


Cell | 2009

Autophagic Components Contribute to Hypersensitive Cell Death in Arabidopsis

Daniel Hofius; Torsten Schultz-Larsen; Jan Joensen; Dimitrios I. Tsitsigiannis; N. Petersen; Ole Mattsson; Lise Bolt Jørgensen; Jonathan D. G. Jones; John Mundy; Morten Petersen

Autophagy has been implicated as a prosurvival mechanism to restrict programmed cell death (PCD) associated with the pathogen-triggered hypersensitive response (HR) during plant innate immunity. This model is based on the observation that HR lesions spread in plants with reduced autophagy gene expression. Here, we examined receptor-mediated HR PCD responses in autophagy-deficient Arabidopsis knockout mutants (atg), and show that infection-induced lesions are contained in atg mutants. We also provide evidence that HR cell death initiated via Toll/Interleukin-1 (TIR)-type immune receptors through the defense regulator EDS1 is suppressed in atg mutants. Furthermore, we demonstrate that PCD triggered by coiled-coil (CC)-type immune receptors via NDR1 is either autophagy-independent or engages autophagic components with cathepsins and other unidentified cell death mediators. Thus, autophagic cell death contributes to HR PCD and can function in parallel with other prodeath pathways.


Plant Physiology | 2013

Transcriptome Responses to Combinations of Stresses in Arabidopsis

Simon Rasmussen; Pankaj Barah; Maria Cristina Suarez-Rodriguez; Simon Bressendorff; Pia Friis; Paolo Costantino; Atle M. Bones; Henrik Bjørn Nielsen; John Mundy

In Arabidopsis, the response of the majority of the genes cannot be predicted from single stress experiments and only a small fraction of the genes have potential antagonistic responses, indicating that plants have evolved to cope with combinations of stresses and therefore may be bred to endure them. Biotic and abiotic stresses limit agricultural yields, and plants are often simultaneously exposed to multiple stresses. Combinations of stresses such as heat and drought or cold and high light intensity have profound effects on crop performance and yields. Thus, delineation of the regulatory networks and metabolic pathways responding to single and multiple concurrent stresses is required for breeding and engineering crop stress tolerance. Many studies have described transcriptome changes in response to single stresses. However, exposure of plants to a combination of stress factors may require agonistic or antagonistic responses or responses potentially unrelated to responses to the corresponding single stresses. To analyze such responses, we initially compared transcriptome changes in 10 Arabidopsis (Arabidopsis thaliana) ecotypes using cold, heat, high-light, salt, and flagellin treatments as single stress factors as well as their double combinations. This revealed that some 61% of the transcriptome changes in response to double stresses were not predic from the responses to single stress treatments. It also showed that plants prioritized between potentially antagonistic responses for only 5% to 10% of the responding transcripts. This indicates that plants have evolved to cope with combinations of stresses and, therefore, may be bred to endure them. In addition, using a subset of this data from the Columbia and Landsberg erecta ecotypes, we have delineated coexpression network modules responding to single and combined stresses.

Collaboration


Dive into the John Mundy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henrik Bjørn Nielsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Ole Mattsson

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Daniel Hofius

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henrik Næsted

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Klaus Petersen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge