Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henrik Frydenlund Hansen is active.

Publication


Featured researches published by Henrik Frydenlund Hansen.


Nature | 2008

LNA-mediated microRNA silencing in non-human primates

Joacim Elmén; Morten Lindow; Sylvia Schütz; Matthew S. Lawrence; Andreas Petri; Susanna Obad; Marie Lindholm; Maj Hedtjärn; Henrik Frydenlund Hansen; Urs V. Berger; Steven R. Gullans; Phil Kearney; Peter Sarnow; Ellen Marie Straarup; Sakari Kauppinen

microRNAs (miRNAs) are small regulatory RNAs that are important in development and disease and therefore represent a potential new class of targets for therapeutic intervention. Despite recent progress in silencing of miRNAs in rodents, the development of effective and safe approaches for sequence-specific antagonism of miRNAs in vivo remains a significant scientific and therapeutic challenge. Moreover, there are no reports of miRNA antagonism in primates. Here we show that the simple systemic delivery of a unconjugated, PBS-formulated locked-nucleic-acid-modified oligonucleotide (LNA-antimiR) effectively antagonizes the liver-expressed miR-122 in non-human primates. Acute administration by intravenous injections of 3 or 10 mg kg-1 LNA-antimiR to African green monkeys resulted in uptake of the LNA-antimiR in the cytoplasm of primate hepatocytes and formation of stable heteroduplexes between the LNA-antimiR and miR-122. This was accompanied by depletion of mature miR-122 and dose-dependent lowering of plasma cholesterol. Efficient silencing of miR-122 was achieved in primates by three doses of 10 mg kg-1 LNA-antimiR, leading to a long-lasting and reversible decrease in total plasma cholesterol without any evidence for LNA-associated toxicities or histopathological changes in the study animals. Our findings demonstrate the utility of systemically administered LNA-antimiRs in exploring miRNA function in rodents and primates, and support the potential of these compounds as a new class of therapeutics for disease-associated miRNAs.


Nature Genetics | 2011

Silencing of microRNA families by seed-targeting tiny LNAs

Susanna Obad; Camila O. dos Santos; Andreas Petri; Markus Heidenblad; Oliver Broom; Cristian Ruse; Cexiong Fu; Morten Lindow; Jan Stenvang; Ellen Marie Straarup; Henrik Frydenlund Hansen; Troels Koch; Darryl Pappin; Gregory J. Hannon; Sakari Kauppinen

The challenge of understanding the widespread biological roles of animal microRNAs (miRNAs) has prompted the development of genetic and functional genomics technologies for miRNA loss-of-function studies. However, tools for exploring the functions of entire miRNA families are still limited. We developed a method that enables antagonism of miRNA function using seed-targeting 8-mer locked nucleic acid (LNA) oligonucleotides, termed tiny LNAs. Transfection of tiny LNAs into cells resulted in simultaneous inhibition of miRNAs within families sharing the same seed with concomitant upregulation of direct targets. In addition, systemically delivered, unconjugated tiny LNAs showed uptake in many normal tissues and in breast tumors in mice, coinciding with long-term miRNA silencing. Transcriptional and proteomic profiling suggested that tiny LNAs have negligible off-target effects, not significantly altering the output from mRNAs with perfect tiny LNA complementary sites. Considered together, these data support the utility of tiny LNAs in elucidating the functions of miRNA families in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2009

MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction

Jannet Kocerha; Mohammad Ali Faghihi; Miguel A. López-Toledano; Jia Huang; Amy J. Ramsey; Marc G. Caron; Nicole Salès; David Willoughby; Joacim Elmén; Henrik Frydenlund Hansen; Henrik Ørum; Sakari Kauppinen; Paul J. Kenny; Claes Wahlestedt

N-methyl-d-aspartate (NMDA) glutamate receptors are regulators of fast neurotransmission and synaptic plasticity in the brain. Disruption of NMDA-mediated glutamate signaling has been linked to behavioral deficits displayed in psychiatric disorders such as schizophrenia. Recently, noncoding RNA molecules such as microRNAs (miRNAs) have emerged as critical regulators of neuronal functions. Here we show that pharmacological (dizocilpine) or genetic (NR1 hypomorphism) disruption of NMDA receptor signaling reduces levels of a brain-specific miRNA, miR-219, in the prefrontal cortex (PFC) of mice. Consistent with a role for miR-219 in NMDA receptor signaling, we identify calcium/calmodulin-dependent protein kinase II γ subunit (CaMKIIγ), a component of the NMDA receptor signaling cascade, as a target of miR-219. In vivo inhibition of miR-219 by specific antimiR in the murine brain significantly modulated behavioral responses associated with disrupted NMDA receptor transmission. Furthermore, pretreatment with the antipsychotic drugs haloperidol and clozapine prevented dizocilpine-induced effects on miR-219. Taken together, these data support an integral role for miR-219 in the expression of behavioral aberrations associated with NMDA receptor hypofunction.


Nucleic Acids Research | 2010

Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates

Ellen Marie Straarup; Niels Fisker; Maj Hedtjärn; Marie Lindholm; Christoph Rosenbohm; Vibeke Aarup; Henrik Frydenlund Hansen; Henrik Ørum; Jens Bo Hansen; Troels Koch

The potency and specificity of locked nucleic acid (LNA) antisense oligonucleotides was investigated as a function of length and affinity. The oligonucleotides were designed to target apolipoprotein B (apoB) and were investigated both in vitro and in vivo. The high affinity of LNA enabled the design of short antisense oligonucleotides (12- to 13-mers) that possessed high affinity and increased potency both in vitro and in vivo compared to longer oligonucleotides. The short LNA oligonucleotides were more target specific, and they exhibited the same biodistribution and tissue half-life as longer oligonucleotides. Pharmacology studies in both mice and non-human primates were conducted with a 13-mer LNA oligonucleotide against apoB, and the data showed that repeated dosing of the 13-mer at 1–2 mg/kg/week was sufficient to provide a significant and long lasting lowering of non-high-density lipoprotein (non-HDL) cholesterol without increasing serum liver toxicity markers. The data presented here show that oligonucleotide length as a parameter needs to be considered in the design of antisense oligonucleotide and that potent short oligonucleotides with sufficient target affinity can be generated using the LNA chemistry. Conclusively, we present a 13-mer LNA oligonucleotide with therapeutic potential that produce beneficial cholesterol lowering effect in non-human primates.


Molecular Therapy | 2012

PCSK9 LNA Antisense Oligonucleotides Induce Sustained Reduction of LDL Cholesterol in Nonhuman Primates

Marie Lindholm; Joacim Elmén; Niels Fisker; Henrik Frydenlund Hansen; Robert Persson; Marianne R. Møller; Christoph Rosenbohm; Henrik Ørum; Ellen Marie Straarup; Troels Koch

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for the reduction of low-density lipoprotein cholesterol (LDL-C). PCSK9 increases the degradation of the LDL receptor, resulting in high LDL-C in individuals with high PCSK9 activity. Here, we show that two locked nucleic acid (LNA) antisense oligonucleotides targeting PCSK9 produce sustained reduction of LDL-C in nonhuman primates after a loading dose (20 mg/kg) and four weekly maintenance doses (5 mg/kg). PCSK9 messenger RNA (mRNA) and serum PCSK9 protein were reduced by 85% which resulted in a 50% reduction in circulating LDL-C. Serum total cholesterol (TC) levels were reduced to the same extent as LDL-C with no reduction in high-density lipoprotein levels, demonstrating a specific pharmacological effect on LDL-C. The reduction in hepatic PCSK9 mRNA correlated with liver LNA oligonucleotide content. This verified that anti-PCSK9 LNA oligonucleotides regulated LDL-C through an antisense mechanism. The compounds were well tolerated with no observed effects on toxicological parameters (liver and kidney histology, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine). The pharmacologic evidence and initial safety profile of the compounds used in this study indicate that LNA antisense oligonucleotides targeting PCSK9 provide a viable therapeutic strategy and are potential complements to statins in managing high LDL-C.


Nucleic Acid Therapeutics | 2012

A Locked Nucleic Acid Oligonucleotide Targeting MicroRNA 122 Is Well-Tolerated in Cynomolgus Monkeys

Elisabeth S. Hildebrandt-Eriksen; Vibeke Aarup; Robert Persson; Henrik Frydenlund Hansen; Martin Munk; Henrik Ørum

MicroRNA 122 (miR-122) is liver specific, fine-tunes lipid metabolism, and is required for hepatitis C virus (HCV) abundance. Miravirsen, an oligonucleotide with locked nucleic acid, binds to miR-122, potently inhibiting its activity. We aimed at determining the safety of the miR-122 antagonism in vivo in 6 to 10 cynomolgus monkeys/group intravenously treated with a range of dose levels twice weekly for 4 weeks. Survival, body weights, clinical signs, and cardiovascular and ophthalmologic parameters were unaffected. Anticipated hypolipidemia due to the inhibition of miR-122 was observed in all treated animals. Only the highest dose level produced distinct transient prolongations of clotting times, slight alternative complement pathway activation, and a reversible increase of hepatic transaminases. Distribution half-life was 10-20 minutes, and accumulation was mainly in the kidney and liver with slow elimination. Microscopic examinations revealed granulated Kupffer cells and lymph node macrophages, cytoplasmic vacuolation in proximal renal tubules, and hepatocytes. The granules were most likely phagolysosomes containing miravirsen. A slightly increased incidence of hepatocyte apoptosis was observed in some monkeys given the highest dose; otherwise, there was no evidence of treatment-related degenerative changes in any organ. In conclusion, the maximal inhibition of miR-122 was associated with limited phenotypic changes, indicating that the clinical assessment of miravirsen as host factor antagonist for treatment of HCV infections is warranted.


Science Translational Medicine | 2013

Pharmacological Inhibition of a MicroRNA Family in Nonhuman Primates by a Seed-Targeting 8-Mer AntimiR

Veerle Rottiers; Susanna Obad; Andreas Petri; Robert W. McGarrah; Marie Lindholm; Joshua C. Black; Sumita Sinha; Robin J. Goody; Matthew S. Lawrence; Andrew S. deLemos; Henrik Frydenlund Hansen; Steve Whittaker; Steve Henry; Rohn Brookes; Seyed Hani Najafi-Shoushtari; Raymond T. Chung; Johnathan R. Whetstine; Robert E. Gerszten; Sakari Kauppinen; Anders M. Näär

Long-term treatment of obese, insulin-resistant nonhuman primates with a seed-targeting antimiR oligonucleotide against the microRNA-33 family derepresses hepatic expression of miR-33 targets, increases circulating HDL cholesterol, and has a clean safety profile. Little AntimiR Packs a Double Punch MicroRNAs (miRNAs) are a type of noncoding RNA that are about 22 nucleotides in length and affect a variety of cellular functions, including normal development and metabolism. These RNAs have also been implicated in many different diseases. Targeted inhibition of miRNAs can be achieved with antimiRs—RNA segments with complementary sequences to miRNAs of interest, which can bind and specifically inhibit their target miRNAs. In humans, miRNAs called miR-33a and miR-33b help control the homeostasis of cholesterol and other lipids, which are associated with cardiovascular disease. To inhibit both of these miRNAs at the same time, Rottiers and colleagues created an unusually short antimiR, only 8 nucleic acids in length, which targets the common portion of both miR-33a and miR-33b. They had tested it in mammalian cells and in mice, and now also confirmed that this short antimiR can be used in nonhuman primates. The authors demonstrated that their antimiR is safe in obese, insulin-resistant nonhuman primates, and that it increases high-density lipoprotein cholesterol. Additional studies will be necessary to learn more about the effects of this 8-mer antimiR on different parameters of metabolism, and to determine how it affects clinical outcomes, such as the risk of death from cardiovascular disease. Nevertheless, this work suggests that miRNA-based approaches could be specifically tailored and potentially safe for patient use, providing an alternative to standard pharmaceutical interventions. MicroRNAs (miRNAs) regulate many aspects of human biology. They target mRNAs for translational repression or degradation through base pairing with 3′ untranslated regions, primarily via seed sequences (nucleotides 2 to 8 in the mature miRNA sequence). A number of individual miRNAs and miRNA families share seed sequences and targets, but differ in the sequences outside of the seed. miRNAs have been implicated in the etiology of a wide variety of human diseases and therefore represent promising therapeutic targets. However, potential redundancy of different miRNAs sharing the same seed sequence and the challenge of simultaneously targeting miRNAs that differ significantly in nonseed sequences complicate therapeutic targeting approaches. We recently demonstrated effective inhibition of entire miRNA families using seed-targeting 8-mer locked nucleic acid (LNA)–modified antimiRs in short-term experiments in mammalian cells and in mice. However, the long-term efficacy and safety of this approach in higher organisms, such as humans and nonhuman primates, have not been determined. We show that pharmacological inhibition of the miR-33 family, key regulators of cholesterol/lipid homeostasis, by a subcutaneously delivered 8-mer LNA-modified antimiR in obese and insulin-resistant nonhuman primates results in derepression of miR-33 targets, such as ABCA1, increases circulating high-density lipoprotein cholesterol, and is well tolerated over 108 days of treatment. These findings demonstrate the efficacy and safety of an 8-mer LNA-antimiR against an miRNA family in a nonhuman primate metabolic disease model, suggesting that this could be a feasible approach for therapeutic targeting of miRNA families sharing the same seed sequence in human diseases.


Molecular Therapy | 2008

An Endogenous TNF-α Antagonist Induced by Splice-switching Oligonucleotides Reduces Inflammation in Hepatitis and Arthritis Mouse Models

Maria Graziewicz; Teresa K. Tarrant; Brian Buckley; Jennifer Roberts; Le Shara M. Fulton; Henrik Frydenlund Hansen; Henrik Ørum; Ryszard Kole; Peter Sazani

Tumor necrosis factor-α (TNF-α) is a key mediator of inflammatory diseases, including rheumatoid arthritis (RA), and anti-TNF-α drugs such as etanercept are effective treatments. Splice-switching oligonucleotides (SSOs) are a new class of drugs designed to induce therapeutically favorable splice variants of targeted genes. In this work, we used locked nucleic acid (LNA)-based SSOs to modulate splicing of TNF receptor 2 (TNFR2) pre-mRNA. The SSO induced skipping of TNFR2 exon 7, which codes the transmembrane domain (TM), switching endogenous expression from the membrane-bound, functional form to a soluble, secreted form (Δ7TNFR2). This decoy receptor protein accumulated in the circulation of treated mice, antagonized TNF-α, and altered disease in two mouse models: TNF-α-induced hepatitis and collagen-induced arthritis (CIA). This is the first report of upregulation of the endogenous, circulating TNF-α antagonist by oligonucleotide-induced splicing modulation.Tumor necrosis factor-alpha (TNF-alpha) is a key mediator of inflammatory diseases, including rheumatoid arthritis (RA), and anti-TNF-alpha drugs such as etanercept are effective treatments. Splice-switching oligonucleotides (SSOs) are a new class of drugs designed to induce therapeutically favorable splice variants of targeted genes. In this work, we used locked nucleic acid (LNA)-based SSOs to modulate splicing of TNF receptor 2 (TNFR2) pre-mRNA. The SSO induced skipping of TNFR2 exon 7, which codes the transmembrane domain (TM), switching endogenous expression from the membrane-bound, functional form to a soluble, secreted form (Delta7TNFR2). This decoy receptor protein accumulated in the circulation of treated mice, antagonized TNF-alpha, and altered disease in two mouse models: TNF-alpha-induced hepatitis and collagen-induced arthritis (CIA). This is the first report of upregulation of the endogenous, circulating TNF-alpha antagonist by oligonucleotide-induced splicing modulation.


Journal of Biomolecular Structure & Dynamics | 2004

Effect of LNA modifications on small molecule binding to nucleic acids.

Violeta L. Marin; Henrik Frydenlund Hansen; Troels Koch; Bruce A. Armitage

Abstract Locked nucleic acid (LNA) is a conformationally constrained DNA analogue that exhibits exceptionally high affinity for complementary DNA and RNA strands. The deoxyribose sugar is modified by a 2′-O, 4′-C oxymethylene bridge, which projects into the minor groove. In addition to changing the distribution of functional groups in the groove and the overall helical geometry relative to unmodified DNA, the bridge likely alters the hydration of the groove. Each of these factors will impact the ability of small molecules, proteins and other nucleic acids to recognize LNA-containing hybrids. This report describes the ability of several DNA-intercalating ligands and one minor groove binder to recognize LNA-DNA and LNA-RNA hybrid duplexes. Using UV-vis, fluorescence and circular dichroism spectroscopies, we find that the minor groove binder as well as the intercalators exhibit significantly lower affinity for LNA-containing duplexes. The lone exception is the alkaloid ellipticine, which intercalates into LNA-DNA and LNA-RNA duplexes with affinities comparable to unmodified DNA-DNA and RNA-DNA duplexes.


Nucleosides, Nucleotides & Nucleic Acids | 2007

Survivin mRNA Antagonists Using Locked Nucleic Acid, Potential for Molecular Cancer Therapy

Niels Fisker; Majken Westergaard; Henrik Frydenlund Hansen; Jens Bo Hansen

We have investigated the effects of different locked nucleic acid modified antisense mRNA antagonists against Survivin in a prostate cancer model. These mRNA antagonists were found to be potent inhibitors of Survivin expression at low nanomolar concentrations. Additionally there was a pronounced synergistic effect when combining the mRNA antagonists against Survivin with the chemotherapeutic Taxol. This effect was demonstrated at concentrations of antagonists far lower than any previously demonstrated, indicating the high potential of locked nucleic acid for therapeutic use. Further characterisations in vivo are ongoing.

Collaboration


Dive into the Henrik Frydenlund Hansen's collaboration.

Top Co-Authors

Avatar

Troels Koch

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge