Henrik Knecht
University of Kiel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henrik Knecht.
Gut | 2013
Ana Elena Pérez-Cobas; María José Gosalbes; Anette K. Friedrichs; Henrik Knecht; Alejandro Artacho; Kathleen Eismann; Wolfgang Otto; David Rojo; Rafael Bargiela; Martin von Bergen; Sven C. Neulinger; Carolin Däumer; Femke-Anouska Heinsen; Amparo Latorre; Coral Barbas; Jana Seifert; Vitor A. P. Martins dos Santos; Stephan J. Ott; Manuel Ferrer; Andrés Moya
Objective Antibiotic (AB) usage strongly affects microbial intestinal metabolism and thereby impacts human health. Understanding this process and the underlying mechanisms remains a major research goal. Accordingly, we conducted the first comparative omic investigation of gut microbial communities in faecal samples taken at multiple time points from an individual subjected to β-lactam therapy. Methods The total (16S rDNA) and active (16S rRNA) microbiota, metagenome, metatranscriptome (mRNAs), metametabolome (high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry) and metaproteome (ultra high performing liquid chromatography coupled to an Orbitrap MS2 instrument [UPLC-LTQ Orbitrap-MS/MS]) of a patient undergoing AB therapy for 14 days were evaluated. Results Apparently oscillatory population dynamics were observed, with an early reduction in Gram-negative organisms (day 6) and an overall collapse in diversity and possible further colonisation by ‘presumptive’ naturally resistant bacteria (day 11), followed by the re-growth of Gram-positive species (day 14). During this process, the maximum imbalance in the active microbial fraction occurred later (day 14) than the greatest change in the total microbial fraction, which reached a minimum biodiversity and richness on day 11; additionally, major metabolic changes occurred at day 6. Gut bacteria respond to ABs early by activating systems to avoid the antimicrobial effects of the drugs, while ‘presumptively’ attenuating their overall energetic metabolic status and the capacity to transport and metabolise bile acid, cholesterol, hormones and vitamins; host–microbial interactions significantly improved after treatment cessation. Conclusions This proof-of-concept study provides an extensive description of gut microbiota responses to follow-up β-lactam therapy. The results demonstrate that ABs targeting specific pathogenic infections and diseases may alter gut microbial ecology and interactions with host metabolism at a much higher level than previously assumed.
PLOS ONE | 2013
Ana Elena Pérez-Cobas; Alejandro Artacho; Henrik Knecht; María Loreto Ferrús; Anette K. Friedrichs; Stephan J. Ott; Andrés Moya; Amparo Latorre; María José Gosalbes
The human intestinal microbiota performs many essential functions for the host. Antimicrobial agents, such as antibiotics (AB), are also known to disturb microbial community equilibrium, thereby having an impact on human physiology. While an increasing number of studies investigate the effects of AB usage on changes in human gut microbiota biodiversity, its functional effects are still poorly understood. We performed a follow-up study to explore the effect of ABs with different modes of action on human gut microbiota composition and function. Four individuals were treated with different antibiotics and samples were taken before, during and after the AB course for all of them. Changes in the total and in the active (growing) microbiota as well as the functional changes were addressed by 16S rRNA gene and metagenomic 454-based pyrosequencing approaches. We have found that the class of antibiotic, particularly its antimicrobial effect and mode of action, played an important role in modulating the gut microbiota composition and function. Furthermore, analysis of the resistome suggested that oscillatory dynamics are not only due to antibiotic-target resistance, but also to fluctuations in the surviving bacterial community. Our results indicated that the effect of AB on the human gut microbiota relates to the interaction of several factors, principally the properties of the antimicrobial agent, and the structure, functions and resistance genes of the microbial community.
Gut microbes | 2013
Ester Hernández; Rafael Bargiela; María Suárez Diez; Anette K. Friedrichs; Ana Elena Pérez-Cobas; María José Gosalbes; Henrik Knecht; Mónica Martínez-Martínez; Jana Seifert; Martin von Bergen; Alejandro Artacho; Alicia Ruiz; Cristina Campoy; Amparo Latorre; Stephan J. Ott; Andrés Moya; Antonio Suárez; Vitor A. P. Martins dos Santos; Manuel Ferrer
The microbiomes in the gastrointestinal tract (GIT) of individuals receiving antibiotics and those in obese subjects undergo compositional shifts, the metabolic effects and linkages of which are not clearly understood. Herein, we set to gain insight into these effects, particularly with regard to carbohydrate metabolism, and to contribute to unravel the underlying mechanisms and consequences for health conditions. We measured the activity level of GIT carbohydrate-active enzymes toward 23 distinct sugars in adults patients (n = 2) receiving 14-d β-lactam therapy and in obese (n = 7) and lean (n = 5) adolescents. We observed that both 14 d antibiotic-treated and obese subjects showed higher and less balanced sugar anabolic capacities, with 40% carbohydrates being preferentially processed as compared with non-treated and lean patients. Metaproteome-wide metabolic reconstructions confirmed that the impaired utilization of sugars propagated throughout the pentose phosphate metabolism, which had adverse consequences for the metabolic status of the GIT microbiota. The results point to an age-independent positive association between GIT glycosidase activity and the body mass index, fasting blood glucose and insulin resistance (r2 ≥ 0.95). Moreover, antibiotics altered the active fraction of enzymes controlling the thickness, composition and consistency of the mucin glycans. Our data and analyses provide biochemical insights into the effects of antibiotic usage on the dynamics of the GIT microbiota and pin-point presumptive links to obesity. The knowledge and the hypotheses generated herein lay a foundation for subsequent, systematic research that will be paramount for the design of “smart” dietary and therapeutic interventions to modulate host-microbe metabolic co-regulation in intestinal homeostasis.
Stratil, Stephanie B., Neulinger, Sven, Knecht, Henrik, Friedrichs, Anette K. and Wahl, Martin (2013) Temperature-driven shifts in the epibiotic bacterial community composition of the brown macroalgaFucus vesiculosus MicrobiologyOpen, 2 (2). pp. 338-349. DOI 10.1002/mbo3.79 <http://dx.doi.org/10.1002/mbo3.79>. | 2013
Stephanie B. Stratil; Sven C. Neulinger; Henrik Knecht; Anette K. Friedrichs; Martin Wahl
The thallus surface of the brown macroalga Fucus vesiculosus is covered by a specific biofilm community. This biofilm supposedly plays an important role in the interaction between host and environment. So far, we know little about compositional or functional shifts of this epibiotic bacterial community under changing environmental conditions. In this study, the response of the microbiota to different temperatures with respect to cell density and community composition was analyzed by nonculture‐based methods (denaturing gradient gel electrophoresis and 454 pyrosequencing of the 16S rRNA gene). Redundancy analysis showed that despite high variability among host individuals temperature accounted for 20% of the variation in the bacterial community composition, whereas cell density did not differ between groups. Across all samples, 4341 bacterial operational taxonomic units (OTUs) at a 97% similarity level were identified. Eight percent of OTUs were significantly correlated with low, medium, and high temperatures. Notably, the family Rhodobacteraceae increased in relative abundance from 20% to 50% with increasing temperature. OTU diversity (evenness and richness) was higher at 15°C than at the lower and higher temperatures. Considering their known and presumed ecological functions for the host, change in the epibacterial community may entail shifts in the performance of the host alga.
BMC Microbiology | 2012
Ateequr Rehman; Femke-Anouska Heinsen; Marjorie E. Koenen; Koen Venema; Henrik Knecht; Stephan Hellmig; Stefan Schreiber; Stephan J. Ott
BackgroundAntibiotic associated diarrhea and Clostridium difficile infection are frequent complications of broad spectrum antibiotic therapy. Probiotic bacteria are used as therapeutic and preventive agents in these disorders, but the exact functional mechanisms and the mode of action are poorly understood. The effects of clindamycin and the probiotic mixture VSL#3 (containing the 8 bacterial strains Streptococcus thermophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus delbrueckii subsp. Bulgaricus) consecutively or in combination were investigated and compared to controls without therapy using a standardized human fecal microbiota in a computer-controlled in vitro model of large intestine. Microbial metabolites (short chain fatty acids, lactate, branched chain fatty acids, and ammonia) and the intestinal microbiota were analyzed.ResultsCompared to controls and combination therapy, short chain fatty acids and lactate, but also ammonia and branched chain fatty acids, were increased under probiotic therapy. The metabolic pattern under combined therapy with antibiotics and probiotics had the most beneficial and consistent effect on intestinal metabolic profiles. The intestinal microbiota showed a decrease in several indigenous bacterial groups under antibiotic therapy, there was no significant recovery of these groups when the antibiotic therapy was followed by administration of probiotics. Simultaneous application of anti- and probiotics had a stabilizing effect on the intestinal microbiota with increased bifidobacteria and lactobacilli.ConclusionsAdministration of VSL#3 parallel with the clindamycin therapy had a beneficial and stabilizing effect on the intestinal metabolic homeostasis by decreasing toxic metabolites and protecting the endogenic microbiota from destruction. Probiotics could be a reasonable strategy in prevention of antibiotic associated disturbances of the intestinal homeostasis and disorders.
PLOS ONE | 2014
Henrik Knecht; Sven C. Neulinger; Femke-Anouska Heinsen; Carolin Knecht; Anke Schilhabel; Ruth A. Schmitz; Alexandra Zimmermann; Vitor A. P. Martins dos Santos; Manuel Ferrer; Philip Rosenstiel; Stefan Schreiber; Anette K. Friedrichs; Stephan J. Ott
Clostridium difficile infections are an emerging health problem in the modern hospital environment. Severe alterations of the gut microbiome with loss of resistance to colonization against C. difficile are thought to be the major trigger, but there is no clear concept of how C. difficile infection evolves and which microbiological factors are involved. We sequenced 16S rRNA amplicons generated from DNA and RNA/cDNA of fecal samples from three groups of individuals by FLX technology: (i) healthy controls (no antibiotic therapy); (ii) individuals receiving antibiotic therapy (Ampicillin/Sulbactam, cephalosporins, and fluoroquinolones with subsequent development of C. difficile infection or (iii) individuals receiving antibiotic therapy without C. difficile infection. We compared the effects of the three different antibiotic classes on the intestinal microbiome and the effects of alterations of the gut microbiome on C. difficile infection at the DNA (total microbiota) and rRNA (potentially active) levels. A comparison of antibiotic classes showed significant differences at DNA level, but not at RNA level. Among individuals that developed or did not develop a C. difficile infection under antibiotics we found no significant differences. We identified single species that were up- or down regulated in individuals receiving antibiotics who developed the infection compared to non-infected individuals. We found no significant differences in the global composition of the transcriptionally active gut microbiome associated with C. difficile infections. We suggest that up- and down regulation of specific bacterial species may be involved in colonization resistance against C. difficile providing a potential therapeutic approach through specific manipulation of the intestinal microbiome.
Gut microbes | 2015
Femke-Anouska Heinsen; Henrik Knecht; Sven C. Neulinger; Ruth A. Schmitz; Carolin Knecht; Tanja Kühbacher; Philip Rosenstiel; Stefan Schreiber; Anette K. Friedrichs; Stephan J. Ott
Gut microbiota play a key role in the hosts health system. Broad antibiotic therapy is known to disrupt the microbial balance affecting pathogenic as well as host-associated microbes. The aim of the present study was to investigate the influence of antibiotic paromomycin on the luminal and mucosa-associated microbiota at the DNA (abundance) and RNA (potential activity) level as well as to identify possible differences. The influence of antibiotic treatment on intestinal microbiota was investigated in 5 healthy individuals (age range: 20–22 years). All participants received the antibiotic paromomycin for 3 d. Fecal samples as well as sigmoidal biopsies were collected before and immediately after cessation of antibiotic treatment as well as after a recovery phase of 42 d. Compartment- and treatment status-specific indicator operational taxonomic units (OTUs) as well as abundance- and activity-specific patterns were identified by 16S rRNA and 16S rRNA gene amplicon libraries and high-throughput pyrosequencing. Microbial composition of lumen and mucosa were significantly different at the DNA compared to the RNA level. Antibiotic treatment resulted in changes of the microbiota, affecting the luminal and mucosal bacteria in a similar way. Several OTUs were identified as compartment- and/or treatment status-specific. Abundance and activity patterns of some indicator OTUs differed considerably. The study shows fundamental changes in composition of gut microbiota under antibiotic therapy at both the potential activity and the abundance level at different treatment status. It may help to understand the complex processes of gut microbiota changes involved in resilience mechanisms and on development of antibiotic-associated clinical diseases.
FEMS Microbiology Ecology | 2014
Stephanie B. Stratil; Sven C. Neulinger; Henrik Knecht; Anette K. Friedrichs; Martin Wahl
Epibiotic biofilms have the potential to control major aspects of the biology and ecology of their hosts. Their composition and function may thus be essential for the health of the host. We tested the influence of salinity on the composition of epibacterial communities associated with the brown macroalga Fucus vesiculosus. Algal individuals were incubated at three salinities (5, 19, and 25) for 14 days and nonliving reference substrata (stones) were included in the experiment. Subsequently, the composition of their surface-associated bacterial communities was analyzed by 454 pyrosequencing of 16S rRNA gene sequences. Redundancy analysis revealed that the composition of epiphytic and epilithic communities significantly differed and were both affected by salinity. We found that 5% of 2494 epiphytic operational taxonomic units at 97% sequence similarity were responsible for the observed shifts. Epibacterial α-diversity was significantly lower at salinity 5 but did not differ between substrata. Our results indicate that salinity is an important factor in structuring alga-associated epibacterial communities with respect to composition and/or diversity. Whether direct or indirect mechanisms (via altered biotic interactions) may have been responsible for the observed shifts is discussed.
PLOS ONE | 2015
Marc W. Fuellgrabe; Dietrich Herrmann; Henrik Knecht; Sven Kuenzel; Michael Kneba; Christiane Pott; Monika Brüggemann
High-throughput sequencing technologies are widely used to analyse genomic variants or rare mutational events in different fields of genomic research, with a fast development of new or adapted platforms and technologies, enabling amplicon-based analysis of single target genes or even whole genome sequencing within a short period of time. Each sequencing platform is characterized by well-defined types of errors, resulting from different steps in the sequencing workflow. Here we describe a universal method to prepare amplicon libraries that can be used for sequencing on different high-throughput sequencing platforms. We have sequenced distinct exons of the CREB binding protein (CREBBP) gene and analysed the output resulting from three major deep-sequencing platforms. platform-specific errors were adjusted according to the result of sequence analysis from the remaining platforms. Additionally, bioinformatic methods are described to determine platform dependent errors. Summarizing the results we present a platform-independent cost-efficient and timesaving method that can be used as an alternative to commercially available sample-preparation kits.
European Respiratory Journal | 2017
Alexandra Zimmermann; Henrik Knecht; Robert Häsler; Gernot Zissel; Karoline I. Gaede; Sylvia Hofmann; Almut Nebel; Joachim Müller-Quernheim; Stefan Schreiber; Annegret Fischer
Sarcoidosis is a granulomatous disease that mainly affects the lung. A role of microbial factors in disease pathogenesis is assumed, but has not been investigated systematically in a large cohort. This cross-sectional study compared the lung microbiota of 71 patients with sarcoidosis, 15 patients with idiopathic pulmonary fibrosis (non-infectious controls) and 10 healthy controls (HCs). Next-generation sequencing of 16S DNA was used on bronchoalveolar lavage samples to characterise the microbial composition, which was analysed for diversity and indicator species. Host genotypes for 13 known sarcoidosis risk variants were determined and correlated with microbial parameters. The microbial composition differed significantly between sarcoidosis and HC samples (redundancy analysis ANOVA, p=0.025) and between radiographic Scadding types. Atopobium spp. was detected in 68% of sarcoidosis samples, but not in HC samples. Fusobacterium spp. was significantly more abundant in sarcoidosis samples compared with those from HCs. Mycobacteria were found in two of 71 sarcoidosis samples. Host-genotype analysis revealed an association of the rs2076530 (BTNL2) risk allele with a decrease in bacterial burden (p=0.002). Our results indicate Scadding type-dependent microbiota in sarcoidosis BAL samples. Atopobium spp. and Fusobacterium spp. were identified as sarcoidosis-associated bacteria, which may enable new insights into the pathogenesis and treatment of the disease. Sarcoidosis lung microbial profiles http://ow.ly/IfTC30gxm2U