Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan J. Ott is active.

Publication


Featured researches published by Stephan J. Ott.


Gut | 2004

Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease

Stephan J. Ott; Meike Musfeldt; D F Wenderoth; Jochen Hampe; O Brant; Ulrich R. Fölsch; Kenneth N. Timmis; Stefan Schreiber

Background and aims: The intestinal bacterial microflora plays an important role in the aetiology of inflammatory bowel disease (IBD). As most of the colonic bacteria cannot be identified by culture techniques, genomic technology can be used for analysis of the composition of the microflora. Patients and methods: The mucosa associated colonic microflora of 57 patients with active inflammatory bowel disease and 46 controls was investigated using 16S rDNA based single strand conformation polymorphism (SSCP) fingerprint, cloning experiments, and real time polymerase chain reaction (PCR). Results: Full length sequencing of 1019 clones from 16S rDNA libraries (n = 3) revealed an overall bacterial diversity of 83 non-redundant sequences—among them, only 49 known bacterial species. Molecular epidemiology of the composition of the colonic microflora was investigated by SSCP. Diversity of the microflora in Crohn’s disease was reduced to 50% compared with controls (21.7 v 50.4; p<0.0001) and to 30% in ulcerative colitis (17.2 v 50.4; p<0.0001). The reduction in diversity in inflammatory bowel disease was due to loss of normal anaerobic bacteria such as Bacteroides species, Eubacterium species, and Lactobacillus species, as revealed by direct sequencing of variable bands and confirmed by real time PCR. Bacterial diversity in the Crohn’s group showed no association with CARD15/NOD2 status. Conclusions: Mucosal inflammation in inflammatory bowel disease is associated with loss of normal anaerobic bacteria. This effect is independent of NOD2/CARD15 status of patients.


Gastroenterology | 2011

Twin Study Indicates Loss of Interaction Between Microbiota and Mucosa of Patients With Ulcerative Colitis

Patricia Lepage; Robert Häsler; Martina E. Spehlmann; Ateequr Rehman; Aida Zvirbliene; Alexander Begun; Stephan J. Ott; Joël Doré; Andreas Raedler; Stefan Schreiber

BACKGROUND & AIMS Interactions between genetic and environmental factors are believed to be involved in onset and initiation of inflammatory bowel disease. We analyzed the interaction between gastrointestinal mucosal microbiota and host genes in twin pairs discordant for ulcerative colitis (UC) to study the functional interaction between microbiota and mucosal epithelium. METHODS Biopsy were collected from sigmoid colon of UC patients and their healthy twins (discordant twin pairs) and from twins without UC. Microbiota profiles were determined from analysis of 16S ribosomal DNA libraries; messenger RNA profiles were determined by microarray analysis. RESULTS Patients with UC had dysbiotic microbiota, characterized by less bacterial diversity and more Actinobacteria and Proteobacteria than that of their healthy siblings; healthy siblings from discordant twins had more bacteria from the Lachnospiraceae and Ruminococcaceae families than twins who were both healthy. In twins who were both healthy, 34 mucosal transcripts correlated with bacterial genera, whereas only 25 and 11 correlated with bacteria genera in healthy individuals and their twins with UC, respectively. Transcripts related to oxidative and immune responses were differentially expressed between patients with UC and their healthy twins. CONCLUSIONS The transcriptional profile of the mucosa appears to interact with the colonic microbiota; this interaction appears to be lost in colon of patients with UC. Bacterial functions, such as butyrate production, might affect mucosal gene expression. Patients with UC had different gene expression profiles and lower levels of biodiversity than their healthy twins, as well as unusual aerobic bacteria. Patients with UC had lower percentages of potentially protective bacterial species than their healthy twins.


Gut | 2013

Gut microbiota disturbance during antibiotic therapy: a multi-omic approach

Ana Elena Pérez-Cobas; María José Gosalbes; Anette K. Friedrichs; Henrik Knecht; Alejandro Artacho; Kathleen Eismann; Wolfgang Otto; David Rojo; Rafael Bargiela; Martin von Bergen; Sven C. Neulinger; Carolin Däumer; Femke-Anouska Heinsen; Amparo Latorre; Coral Barbas; Jana Seifert; Vitor A. P. Martins dos Santos; Stephan J. Ott; Manuel Ferrer; Andrés Moya

Objective Antibiotic (AB) usage strongly affects microbial intestinal metabolism and thereby impacts human health. Understanding this process and the underlying mechanisms remains a major research goal. Accordingly, we conducted the first comparative omic investigation of gut microbial communities in faecal samples taken at multiple time points from an individual subjected to β-lactam therapy. Methods The total (16S rDNA) and active (16S rRNA) microbiota, metagenome, metatranscriptome (mRNAs), metametabolome (high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry) and metaproteome (ultra high performing liquid chromatography coupled to an Orbitrap MS2 instrument [UPLC-LTQ Orbitrap-MS/MS]) of a patient undergoing AB therapy for 14 days were evaluated. Results Apparently oscillatory population dynamics were observed, with an early reduction in Gram-negative organisms (day 6) and an overall collapse in diversity and possible further colonisation by ‘presumptive’ naturally resistant bacteria (day 11), followed by the re-growth of Gram-positive species (day 14). During this process, the maximum imbalance in the active microbial fraction occurred later (day 14) than the greatest change in the total microbial fraction, which reached a minimum biodiversity and richness on day 11; additionally, major metabolic changes occurred at day 6. Gut bacteria respond to ABs early by activating systems to avoid the antimicrobial effects of the drugs, while ‘presumptively’ attenuating their overall energetic metabolic status and the capacity to transport and metabolise bile acid, cholesterol, hormones and vitamins; host–microbial interactions significantly improved after treatment cessation. Conclusions This proof-of-concept study provides an extensive description of gut microbiota responses to follow-up β-lactam therapy. The results demonstrate that ABs targeting specific pathogenic infections and diseases may alter gut microbial ecology and interactions with host metabolism at a much higher level than previously assumed.


Scandinavian Journal of Gastroenterology | 2008

Fungi and inflammatory bowel diseases: Alterations of composition and diversity

Stephan J. Ott; Tanja Kühbacher; Meike Musfeldt; Philip Rosenstiel; Stephan Hellmig; Ateequr Rehman; Oliver Drews; Wilko Weichert; Kenneth N. Timmis; Stefan Schreiber

Objective. Altered bacterial diversity of the intestinal mucosa-associated microbiota may reflect the net influence of lifestyle factors associated with the development of chronic inflammatory bowel diseases (IBD). While a reduced bacterial diversity has been reported in IBD, little is known about the fungal microbiota. The aim of this study was to carry out a systematic analysis of intestinal fungal microbiota in IBD. Material and methods. The mucosa-associated fungal microbiota of 104 colonic biopsy tissues from 47 controls and 57 IBD patients was investigated using metagenomic 18S rDNA-based denaturing gradient gel electrophoresis (DGGE), clone libraries, sequencing, and in situ hybridization techniques. Results. Fungi-specific 18S rDNA signatures could be detected in all 104 patients, accounting for only a small proportion of the intestinal microbiota (0.02% of the mucosal and 0.03% of the fecal microbiota). An overall fungal biodiversity of 43 different operational taxonomic units (OTUs) was found in the clone libraries. The qualitative composition of fungal microbiota was different between patients with IBD and controls. The DGGE profiles showed a higher mean fungal diversity in patients with Crohns disease (CD) in comparison with controls (10.8±3.1 versus 6.2±2.4 for CD, p ≤ 0.001). No disease-specific fungal species were found in the CD and ulcerative colitis (UC) group. Conclusions. Diverse fungal species are part of the normal enteric microbiota, but diversity is increased and composition of the fungal communities varies in IBD. Further work is needed to investigate whether the alteration of the fungal flora in IBD is secondary to an imbalanced bacterial microbiota or an independent etiologic factor.


Circulation | 2006

Detection of Diverse Bacterial Signatures in Atherosclerotic Lesions of Patients With Coronary Heart Disease

Stephan J. Ott; Nour Eddine El Mokhtari; Meike Musfeldt; Stephan Hellmig; Sandra Freitag; Ateequr Rehman; Tanja Kühbacher; Susanna Nikolaus; Pawel Namsolleck; Michael Blaut; Jochen Hampe; Hany Sahly; Alexander Reinecke; Nils Haake; Rainer Günther; Dietmar Krüger; Markus Lins; Gunhild Herrmann; Ulrich R. Fölsch; Rüdiger Simon; Stefan Schreiber

Background— Bacterial infection has been discussed as a potential etiologic factor in the pathophysiology of coronary heart disease (CHD). This study analyzes molecular phylogenies to systematically explore the presence, frequency, and diversity of bacteria in atherosclerotic lesions in patients with CHD. Methods and Results— We investigated 16S rDNA signatures in atherosclerotic tissue obtained through catheter-based atherectomy of 38 patients with CHD, control material from postmortem patients (n=15), and heart-beating organ donors (n=11) using clone libraries, denaturating gradient gel analysis, and fluorescence in situ hybridization. Bacterial DNA was found in all CHD patients by conserved PCR but not in control material or in any of the normal/unaffected coronary arteries. Presence of bacteria in atherosclerotic lesions was confirmed by fluorescence in situ hybridization. A high overall bacterial diversity of >50 different species, among them Staphylococcus species, Proteus vulgaris, Klebsiella pneumoniae, and Streptococcus species, was demonstrated in >1500 clones from a combined library and confirmed by denaturating gradient gel analysis. Mean bacterial diversity in atheromas was high, with a score of 12.33±3.81 (range, 5 to 22). A specific PCR detected Chlamydia species in 51.5% of CHD patients. Conclusions— Detection of a broad variety of molecular signatures in all CHD specimens suggests that diverse bacterial colonization may be more important than a single pathogen. Our observation does not allow us to conclude that bacteria are the causative agent in the etiopathogenesis of CHD. However, bacterial agents could have secondarily colonized atheromatous lesions and could act as an additional factor accelerating disease progression.


Gut | 2011

Nod2 is essential for temporal development of intestinal microbial communities

Ateequr Rehman; Christian Sina; Olga Gavrilova; Robert Häsler; Stephan J. Ott; John F. Baines; Stefan Schreiber; Philip Rosenstiel

Objective The mammalian commensal gut microbiota is highly diverse and displays an individual-specific composition determined by host genotype and environmental factors. The temporal development of host–microbial homeostasis in the digestive tract is recognised as a major function of the immune system. However, the underlying cellular and molecular mechanisms are just beginning to come to light. Nucleotide-binding, oligomerisation domain 2 (NOD2) recognises bacterial muramyl dipeptide and is regarded as a pivotal sensor molecule of the intestinal barrier. The aim of this study was to investigate its influence on the development and composition of the intestinal microbiota using a Nod2-deficient mouse model. Methods The dynamics of faecal and ileal microbial composition were investigated in Nod2+/+and Nod2−/− mice on a C57BL/6J background. We assessed microbial diversity and composition using 16S ribosomal RNA gene-based clone library sequencing and high throughput pyrosequencing and quantified the observed changes by real-time PCR. Changes in the major bacterial phyla were investigated in human samples by quantitative real-time PCR. Results We found that adult Nod2-deficient mice display a substantially altered microbial community structure and a significantly elevated bacterial load in their faeces and terminal ileum compared to their wild-type counterparts. Interestingly, we demonstrate that these findings are also present in weaning mice, indicating a profound influence of Nod2 on the early development and composition of the intestinal microbiota. We demonstrate that NOD2 genotypes also influence the microbial composition in humans. Conclusions Our results point to an essential role of Nod2 for the temporal development and composition of the host microbiota, both in mice and in humans, which may contribute to the complex role of NOD2 for the aetiopathogenesis of Crohns disease.


Journal of Immunology | 2009

G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation.

Christian Sina; Olga Gavrilova; Matti Förster; Andreas Till; Stefanie Derer; Friederike L. Hildebrand; Björn Raabe; Athena Chalaris; Jürgen Scheller; Ateequr Rehmann; Andre Franke; Stephan J. Ott; Robert Häsler; Susanna Nikolaus; Ulrich R. Fölsch; Stefan Rose-John; Hui-Ping Jiang; Jun Li; Stefan Schreiber; Philip Rosenstiel

Molecular danger signals attract neutrophilic granulocytes (polymorphonuclear leukocytes (PMNs)) to sites of infection. The G protein-coupled receptor (GPR) 43 recognizes propionate and butyrate and is abundantly expressed on PMNs. The functional role of GPR43 activation for in vivo orchestration of immune response is unclear. We examined dextrane sodium sulfate (DSS)-induced acute and chronic intestinal inflammatory response in wild-type and Gpr43-deficient mice. The severity of colonic inflammation was assessed by clinical signs, histological scoring, and cytokine production. Chemotaxis of wild-type and Gpr43-deficient PMNs was assessed through transwell cell chemotactic assay. A reduced invasion of PMNs and increased mortality due to septic complications were observed in acute DSS colitis. In chronic DSS colitis, Gpr43−/− animals showed diminished PMN intestinal migration, but protection against inflammatory tissue destruction. No significant difference in PMN migration and cytokine secretion was detected in a sterile inflammatory model. Ex vivo experiments show that GPR43-induced migration is dependent on activation of the protein kinase p38α, and that this signal acts in cooperation with the chemotactic cytokine keratinocyte chemoattractant. Interestingly, shedding of L-selectin in response to propionate and butyrate was compromised in Gpr43−/− mice. These results indicate a critical role for GPR43-mediated recruitment of PMNs in containing intestinal bacterial translocation, yet also emphasize the bipotential role of PMNs in mediating tissue destruction in chronic intestinal inflammation.


Gut | 2006

Bacterial and fungal microbiota in relation to probiotic therapy (VSL#3) in pouchitis

Tanja Kühbacher; Stephan J. Ott; Ulf Helwig; Toshiki Mimura; Fernando Rizzello; Brigitta Kleessen; Paolo Gionchetti; Michael Blaut; Massimo Campieri; Ulrich R. Fölsch; Michael A. Kamm; Stefan Schreiber

Background: The intestinal microbiota plays a critical role in the pathophysiology of pouchitis, a major complication after ileal pouch anal anastomosis in patients with ulcerative colitis. Recently, controlled trials have demonstrated that probiotics are effective in maintenance of remission in pouchitis patients. However, the mechanism by which therapy with probiotics works remains elusive. This study explores the role of the bacterial and fungal flora in a controlled trial for maintenance of remission in pouchitis patients with the probiotic VSL#3 compound. Methods: The mucosa associated pouch microbiota was investigated before and after therapy with VSL#3 by analysis of endoscopic biopsies using ribosomal DNA/RNA based community fingerprint analysis, clone libraries, real time polymerase chain reaction (PCR), and fluorescence in situ hybridisation. Patients were recruited from a placebo controlled remission maintenance trial with VSL#3. Results: Patients who developed pouchitis while treated with placebo had low bacterial and high fungal diversity. Bacterial diversity was increased and fungal diversity was reduced in patients in remission maintained with VSL#3 (p = 0.001). Real time PCR experiments demonstrated that VSL#3 increased the total number of bacterial cells (p = 0.002) and modified the spectrum of bacteria towards anaerobic species. Taxa specific clone libraries for Lactobacilli and Bifidobacteria showed that the richness and spectrum of these bacteria were altered under probiotic therapy. Conclusions: Probiotic therapy with VSL#3 increases the total number of intestinal bacterial cells as well as the richness and diversity of the bacterial microbiota, especially the anaerobic flora. The diversity of the fungal flora is repressed. Restoration of the integrity of a “protective” intestinal mucosa related microbiota could therefore be a potential mechanism of probiotic bacteria in inflammatory barrier diseases of the lower gastrointestinal tract.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype

Philipp Rausch; Ateequr Rehman; Sven Künzel; Robert Häsler; Stephan J. Ott; Stefan Schreiber; Philip Rosenstiel; Andre Franke; John F. Baines

The FUT2 (Secretor) gene is responsible for the presence of ABO histo-blood group antigens on the gastrointestinal mucosa and in bodily secretions. Individuals lacking a functional copy of FUT2 are known as “nonsecretors” and display an array of differences in susceptibility to infection and disease, including Crohn disease. To determine whether variation in resident microbial communities with respect to FUT2 genotype is a potential factor contributing to susceptibility, we performed 454-based community profiling of the intestinal microbiota in a panel of healthy subjects and Crohn disease patients and determined their genotype for the primary nonsecretor allele in Caucasian populations, W143X (G428A). Consistent with previous studies, we observe significant deviations in the microbial communities of individuals with Crohn disease. Furthermore, the FUT2 genotype explains substantial differences in community composition, diversity, and structure, and we identified several bacterial species displaying disease-by-genotype associations. These findings indicate that alterations in resident microbial communities may in part explain the variety of host susceptibilities surrounding nonsecretor status and that FUT2 is an important genetic factor influencing host–microbial diversity.


PLOS ONE | 2013

Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans.

Luc Biedermann; Jonas Zeitz; Jessica Mwinyi; Eveline Sutter-Minder; Ateequr Rehman; Stephan J. Ott; Claudia Steurer-Stey; Anja Frei; Pascal Frei; Michael Scharl; Martin J. Loessner; Stephan R. Vavricka; Michael Fried; Stefan Schreiber; Markus Schuppler; Gerhard Rogler

Background The human intestinal microbiota is a crucial factor in the pathogenesis of various diseases, such as metabolic syndrome or inflammatory bowel disease (IBD). Yet, knowledge about the role of environmental factors such as smoking (which is known to influence theses aforementioned disease states) on the complex microbial composition is sparse. We aimed to investigate the role of smoking cessation on intestinal microbial composition in 10 healthy smoking subjects undergoing controlled smoking cessation. Methods During the observational period of 9 weeks repetitive stool samples were collected. Based on abundance of 16S rRNA genes bacterial composition was analysed and compared to 10 control subjects (5 continuing smokers and 5 non-smokers) by means of Terminal Restriction Fragment Length Polymorphism analysis and high-throughput sequencing. Results Profound shifts in the microbial composition after smoking cessation were observed with an increase of Firmicutes and Actinobacteria and a lower proportion of Bacteroidetes and Proteobacteria on the phylum level. In addition, after smoking cessation there was an increase in microbial diversity. Conclusions These results indicate that smoking is an environmental factor modulating the composition of human gut microbiota. The observed changes after smoking cessation revealed to be similar to the previously reported differences in obese compared to lean humans and mice respectively, suggesting a potential pathogenetic link between weight gain and smoking cessation. In addition they give rise to a potential association of smoking status and the course of IBD.

Collaboration


Dive into the Stephan J. Ott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jochen Hampe

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge