Henrik Sahlin Pettersen
Norwegian University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henrik Sahlin Pettersen.
Cephalalgia | 2001
Ottar Sjaastad; Henrik Sahlin Pettersen; Leiv S. Bakketeig
In a large-scale study of headache epidemiology in Vågå, Norway, 1838 adult parishioners(18–65 years of age) were examined, and this represents 88.6% of the target group. Jabs and jolts syndrome/idiopathic stabbing headache (ISH) was verified in 35.2% of the questioned parishioners. This prevalence is much higher than previously observed ones. There were clearly more females than males, the female/male ratio being 1.49, as compared to a ratio of 1.06 in the study cohort (P-value: < 0.0001, χ2 test). The ratio, 1.49, also differs clearly from a previously observed one: 6.6 (P-value = 0.0003, Fishers exact test). Control studies included blinded re-check of 100 work-ups, with complete concurrence (kappa-value of 1.00 and blinded re-check of 41 individuals (kapp value of 0.841). Jabs and jolts/ISH are frequent and almost the sole shortlasting (generally < 3 s duration) cephalic paroxysms.
Philosophical Transactions of the Royal Society B | 2009
Torkild Visnes; Berit Doseth; Henrik Sahlin Pettersen; Lars Hagen; Mirta M. L. Sousa; Mansour Akbari; Marit Otterlei; Bodil Kavli; Geir Slupphaug; Hans E. Krokan
Uracil in DNA may result from incorporation of dUMP during replication and from spontaneous or enzymatic deamination of cytosine, resulting in U:A pairs or U:G mismatches, respectively. Uracil generated by activation-induced cytosine deaminase (AID) in B cells is a normal intermediate in adaptive immunity. Five mammalian uracil-DNA glycosylases have been identified; these are mitochondrial UNG1 and nuclear UNG2, both encoded by the UNG gene, and the nuclear proteins SMUG1, TDG and MBD4. Nuclear UNG2 is apparently the sole contributor to the post-replicative repair of U:A lesions and to the removal of uracil from U:G contexts in immunoglobulin genes as part of somatic hypermutation and class-switch recombination processes in adaptive immunity. All uracil-DNA glycosylases apparently contribute to U:G repair in other cells, but they are likely to have different relative significance in proliferating and non-proliferating cells, and in different phases of the cell cycle. There are also some indications that there may be species differences in the function of the uracil-DNA glycosylases.
Nucleic Acids Research | 2007
Henrik Sahlin Pettersen; Ottar Sundheim; Karin Margaretha Gilljam; Geir Slupphaug; Hans E. Krokan; Bodil Kavli
DNA glycosylases UNG and SMUG1 excise uracil from DNA and belong to the same protein superfamily. Vertebrates contain both SMUG1 and UNG, but their distinct roles in base excision repair (BER) of deaminated cytosine (U:G) are still not fully defined. Here we have examined the ability of human SMUG1 and UNG2 (nuclear UNG) to initiate and coordinate repair of U:G mismatches. When expressed in Escherichia coli cells, human UNG2 initiates complete repair of deaminated cytosine, while SMUG1 inhibits cell proliferation. In vitro, we show that SMUG1 binds tightly to AP-sites and inhibits AP-site cleavage by AP-endonucleases. Furthermore, a specific motif important for the AP-site product binding has been identified. Mutations in this motif increase catalytic turnover due to reduced product binding. In contrast, the highly efficient UNG2 lacks product-binding capacity and stimulates AP-site cleavage by APE1, facilitating the two first steps in BER. In summary, this work reveals that SMUG1 and UNG2 coordinate the initial steps of BER by distinct mechanisms. UNG2 is apparently adapted to rapid and highly coordinated repair of uracil (U:G and U:A) in replicating DNA, while the less efficient SMUG1 may be more important in repair of deaminated cytosine (U:G) in non-replicating chromatin.
Nucleic Acids Research | 2011
Henrik Sahlin Pettersen; Torkild Visnes; Cathrine Broberg Vågbø; Eva. K. Svaasand; Berit Doseth; Geir Slupphaug; Bodil Kavli; Hans E. Krokan
Cytotoxicity of 5-fluorouracil (FU) and 5-fluoro-2′-deoxyuridine (FdUrd) due to DNA fragmentation during DNA repair has been proposed as an alternative to effects from thymidylate synthase (TS) inhibition or RNA incorporation. The goal of the present study was to investigate the relative contribution of the proposed mechanisms for cytotoxicity of 5-fluoropyrimidines. We demonstrate that in human cancer cells, base excision repair (BER) initiated by the uracil–DNA glycosylase UNG is the major route for FU–DNA repair in vitro and in vivo. SMUG1, TDG and MBD4 contributed modestly in vitro and not detectably in vivo. Contribution from mismatch repair was limited to FU:G contexts at best. Surprisingly, knockdown of individual uracil–DNA glycosylases or MSH2 did not affect sensitivity to FU or FdUrd. Inhibitors of common steps of BER or DNA damage signalling affected sensitivity to FdUrd and HmdUrd, but not to FU. In support of predominantly RNA-mediated cytotoxicity, FU-treated cells accumulated ~3000- to 15 000-fold more FU in RNA than in DNA. Moreover, FU-cytotoxicity was partially reversed by ribonucleosides, but not deoxyribonucleosides and FU displayed modest TS-inhibition compared to FdUrd. In conclusion, UNG-initiated BER is the major route for FU–DNA repair, but cytotoxicity of FU is predominantly RNA-mediated, while DNA-mediated effects are limited to FdUrd.
DNA Repair | 2010
Mansour Akbari; Karin Solvang-Garten; Nora Valeska Lieske; Henrik Sahlin Pettersen; Grete Klippenvåg Pettersen; David M. Wilson; Hans E. Krokan; Marit Otterlei
Uracil-DNA glycosylase, UNG2, interacts with PCNA and initiates post-replicative base excision repair (BER) of uracil in DNA. The DNA repair protein XRCC1 also co-localizes and physically interacts with PCNA. However, little is known about whether UNG2 and XRCC1 directly interact and participate in a same complex for repair of uracil in replication foci. Here, we examine localization pattern of these proteins in live and fixed cells and show that UNG2 and XRCC1 are likely in a common complex in replication foci. Using pull-down experiments we demonstrate that UNG2 directly interacts with the nuclear localization signal-region (NLS) of XRCC1. Western blot and functional analysis of immunoprecipitates from whole cell extracts prepared from S-phase enriched cells demonstrate the presence of XRCC1 complexes that contain UNG2 in addition to separate XRCC1 and UNG2 associated complexes with distinct repair features. XRCC1 complexes performed complete repair of uracil with higher efficacy than UNG2 complexes. Based on these results, we propose a model for a functional role of XRCC1 in replication associated BER of uracil.
DNA Repair | 2015
Henrik Sahlin Pettersen; Anastasia Galashevskaya; Berit Doseth; Mirta M. L. Sousa; Antonio Sarno; Torkild Visnes; Per Arne Aas; Nina-Beate Liabakk; Geir Slupphaug; Pål Sætrom; Bodil Kavli; Hans E. Krokan
The most common mutations in cancer are C to T transitions, but their origin has remained elusive. Recently, mutational signatures of APOBEC-family cytosine deaminases were identified in many common cancers, suggesting off-target deamination of cytosine to uracil as a common mutagenic mechanism. Here we present evidence from mass spectrometric quantitation of deoxyuridine in DNA that shows significantly higher genomic uracil content in B-cell lymphoma cell lines compared to non-lymphoma cancer cell lines and normal circulating lymphocytes. The genomic uracil levels were highly correlated with AID mRNA and protein expression, but not with expression of other APOBECs. Accordingly, AID knockdown significantly reduced genomic uracil content. B-cells stimulated to express endogenous AID and undergo class switch recombination displayed a several-fold increase in total genomic uracil, indicating that B cells may undergo widespread cytosine deamination after stimulation. In line with this, we found that clustered mutations (kataegis) in lymphoma and chronic lymphocytic leukemia predominantly carry AID-hotspot mutational signatures. Moreover, we observed an inverse correlation of genomic uracil with uracil excision activity and expression of the uracil-DNA glycosylases UNG and SMUG1. In conclusion, AID-induced mutagenic U:G mismatches in DNA may be a fundamental and common cause of mutations in B-cell malignancies.
DNA Repair | 2014
Hans E. Krokan; Pål Sætrom; Per Arne Aas; Henrik Sahlin Pettersen; Bodil Kavli; Geir Slupphaug
Genomic uracil is normally processed essentially error-free by base excision repair (BER), with mismatch repair (MMR) as an apparent backup for U:G mismatches. Nuclear uracil-DNA glycosylase UNG2 is the major enzyme initiating BER of uracil of U:A pairs as well as U:G mismatches. Deficiency in UNG2 results in several-fold increases in genomic uracil in mammalian cells. Thus, the alternative uracil-removing glycosylases, SMUG1, TDG and MBD4 cannot efficiently complement UNG2-deficiency. A major function of SMUG1 is probably to remove 5-hydroxymethyluracil from DNA with general back-up for UNG2 as a minor function. TDG and MBD4 remove deamination products U or T mismatched to G in CpG/mCpG contexts, but may have equally or more important functions in development, epigenetics and gene regulation. Genomic uracil was previously thought to arise only from spontaneous cytosine deamination and incorporation of dUMP, generating U:G mismatches and U:A pairs, respectively. However, the identification of activation-induced cytidine deaminase (AID) and other APOBEC family members as DNA-cytosine deaminases has spurred renewed interest in the processing of genomic uracil. Importantly, AID triggers the adaptive immune response involving error-prone processing of U:G mismatches, but also contributes to B-cell lymphomagenesis. Furthermore, mutational signatures in a substantial fraction of other human cancers are consistent with APOBEC-induced mutagenesis, with U:G mismatches as prime suspects. Mutations can be caused by replicative polymerases copying uracil in U:G mismatches, or by translesion polymerases that insert incorrect bases opposite abasic sites after uracil-removal. In addition, kataegis, localized hypermutations in one strand in the vicinity of genomic rearrangements, requires APOBEC protein, UNG2 and translesion polymerase REV1. What mechanisms govern error-free versus error prone processing of uracil in DNA remains unclear. In conclusion, genomic uracil is an essential intermediate in adaptive immunity and innate antiviral responses, but may also be a fundamental cause of a wide range of malignancies.
Journal of Biological Chemistry | 2011
Berit Doseth; Torkild Visnes; Anders Wallenius; Ida Ericsson; Antonio Sarno; Henrik Sahlin Pettersen; Arnar Flatberg; Tara Catterall; Geir Slupphaug; Hans E. Krokan; Bodil Kavli
Genomic uracil is a DNA lesion but also an essential key intermediate in adaptive immunity. In B cells, activation-induced cytidine deaminase deaminates cytosine to uracil (U:G mispairs) in Ig genes to initiate antibody maturation. Uracil-DNA glycosylases (UDGs) such as uracil N-glycosylase (UNG), single strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), and thymine-DNA glycosylase remove uracil from DNA. Gene-targeted mouse models are extensively used to investigate the role of these enzymes in DNA repair and Ig diversification. However, possible species differences in uracil processing in humans and mice are yet not established. To address this, we analyzed UDG activities and quantities in human and mouse cell lines and in splenic B cells from Ung+/+ and Ung−/− backcrossed mice. Interestingly, human cells displayed ∼15-fold higher total uracil excision capacity due to higher levels of UNG. In contrast, SMUG1 activity was ∼8-fold higher in mouse cells, constituting ∼50% of the total U:G excision activity compared with less than 1% in human cells. In activated B cells, both UNG and SMUG1 activities were at levels comparable with those measured for mouse cell lines. Moreover, SMUG1 activity per cell was not down-regulated after activation. We therefore suggest that SMUG1 may work as a weak backup activity for UNG2 during class switch recombination in Ung−/− mice. Our results reveal significant species differences in genomic uracil processing. These findings should be taken into account when mouse models are used in studies of uracil DNA repair and adaptive immunity.
Cephalalgia | 2005
Ottar Sjaastad; Henrik Sahlin Pettersen; Leiv S. Bakketeig
DNA Repair | 2013
Siv A. Hegre; Pål Sætrom; Per Arne Aas; Henrik Sahlin Pettersen; Marit Otterlei; Hans E. Krokan