Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henrique Bunselmeyer Ferreira is active.

Publication


Featured researches published by Henrique Bunselmeyer Ferreira.


Journal of Bacteriology | 2005

Swine and Poultry Pathogens: the Complete Genome Sequences of Two Strains of Mycoplasma hyopneumoniae and a Strain of Mycoplasma synoviae

Ana Tereza R. Vasconcelos; Henrique Bunselmeyer Ferreira; Cristiano Valim Bizarro; Sandro L. Bonatto; Marcos Oliveira de Carvalho; Paulo Marcos Pinto; Darcy F. de Almeida; Luiz G. P. Almeida; Rosana Almeida; Leonardo Alves-Filho; E. Assunção; Vasco Azevedo; Maurício Reis Bogo; Marcelo M. Brigido; Marcelo Brocchi; Helio A. Burity; Anamaria A. Camargo; Sandro da Silva Camargo; Marta Sofia Peixe Carepo; Dirce M. Carraro; Júlio C. de Mattos Cascardo; Luiza Amaral de Castro; Gisele Cavalcanti; Gustavo Chemale; Rosane G. Collevatti; Cristina W. Cunha; Bruno Dallagiovanna; Bibiana Paula Dambrós; Odir A. Dellagostin; Clarissa Falcão

This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons revealed that reduction in genome size implied loss of redundant metabolic pathways, with maintenance of alternative routes in different species. Horizontal gene transfer was consistently observed between M. synoviae and Mycoplasma gallisepticum. Our analyses indicated a likely transfer event of hemagglutinin-coding DNA sequences from M. gallisepticum to M. synoviae.


Clinical and Experimental Immunology | 2003

A set of recombinant antigens from Echinococcus granulosus with potential for use in the immunodiagnosis of human cystic hydatid disease

Veridiana Gomes Virginio; A. Hernández; Marilise Brittes Rott; Karina Mariante Monteiro; A. F. Zandonai; A. Nieto; Arnaldo Zaha; Henrique Bunselmeyer Ferreira

Several recombinant clones expressing antigens from Echinococcus granulosus were isolated previously from a parasite cDNA library using cystic hydatid disease (CHD) patients’ sera or rabbit hyperimmune antiserum against a lipoproteic fraction from bovine cyst fluid. Six of these antigens were expressed in Escherichia coli and the purified recombinant proteins were tested in enzyme‐linked immunosorbent assay (ELISA) for specific IgG with a panel of sera from patients with surgically confirmed (n = 58) or immunologically diagnosed (n = 71) CHD. Sera from clinically normal individuals (n = 203) and sera from individuals with other helminthic infections (n = 65) were assayed for the assessment of specificity. A cut‐off value was determined by receiver‐operating‐characteristic plots for each antigen. A recombinant antigen B subunit (AgB8/2) presented the highest sensitivity (93·1%), considering the group of sera from patients with CHD surgically confirmed, and specificity (99·5%) and is proposed as the basis for an immunodiagnostic test. The other recombinant antigens tested presented sensitivities between 58·6% and 89·7%, and three of them were considered of complementary value. In subclass‐specific ELISA, different IgG isotypes showed dominance in the response for each of the recombinant antigens. There was a clear predominance of IgG4 response for all antigens tested, indicating that this would be the subclass of choice to be assessed for these recombinant proteins.


Proteomics | 2010

Proteomic analysis of the Echinococcus granulosus metacestode during infection of its intermediate host.

Karina Mariante Monteiro; Marcos Oliveira de Carvalho; Arnaldo Zaha; Henrique Bunselmeyer Ferreira

Cystic hydatid disease (CHD) is caused by infection with the Echinococcus granulosus metacestode and affects both humans and livestock. In this work, we performed a proteomic analysis of the E. granulosus metacestode during infection of its intermediate bovine host. Parasite proteins were identified in different metacestode components (94 from protoscolex, 25 from germinal layer and 20 from hydatid cyst fluid), along with host proteins (58) that permeate into the hydatid cyst, providing new insights into host‐parasite interplay. E. granulosus and platyhelminth EST data allowed successful identification of proteins potentially involved in downregulation of host defenses, highlighting possible evasion mechanisms adopted by the parasite to establish infection. Several intracellular proteins were found in hydatid cyst fluid, revealing a set of newly identified proteins that were previously thought to be inaccessible for inducing or modulating the host immune response. Host proteins identified in association with the hydatid cyst suggest that the parasite may bind/adsorb host molecules with nutritional and/or immune evasion purposes, masking surface antigens or inhibiting important effector molecules of host immunity, such as complement components and calgranulin. Overall, our results provide valuable information on parasite survival strategies in the adverse host environment and on the molecular mechanisms underpinning CHD immunopathology.


Molecular and Biochemical Parasitology | 2012

Excretory/secretory products from in vitro-cultured Echinococcus granulosus protoscoleces

Veridiana Gomes Virginio; Karina Mariante Monteiro; Fernanda Drumond; Marcos Oliveira de Carvalho; Daiani Machado de Vargas; Arnaldo Zaha; Henrique Bunselmeyer Ferreira

Cystic hydatid disease (CHD) is caused by infection with Echinococcus granulosus metacestodes and affects humans and livestock. Proteins secreted or excreted by protoscoleces, pre-adult worms found in the metacestode, are thought to play fundamental roles in the host-parasite relationship. In this work, we performed an LC-MS/MS proteomic analysis of the excretory-secretory products obtained from the first 48 h of an in vitro culture of the protoscoleces. We identified 32 proteins, including 18 that were never detected previously in metacestode proteomic studies. Among the novel identified excretory-secretory products are antigenic proteins, such as EG19 and P-29 and a calpain protease. We also identified other important protoscolex excretory-secretory products, such as thioredoxin peroxidase and 14-3-3 proteins, which are potentially involved in evasion mechanisms adopted by parasites to establish infection. Several intracellular proteins were found in the excretory-secretory products, revealing a set of identified proteins not previously thought to be exposed at the host-parasite interface. Additionally, immunological analyses established the antigenic profiles of the newly identified excretory-secretory products and revealed, for the first time, the in vitro secretion of the B antigen by protoscoleces. Considering that the excretory-secretory products obtained in vitro might reflect the products released and exposed to the host in vivo, our results provide valuable information on parasite survival strategies in adverse host environments and on the molecular mechanisms underpinning CHD immunopathology.


Journal of Clinical Microbiology | 2005

Comparative Analysis of the Diagnostic Performance of Six Major Echinococcus granulosus Antigens Assessed in a Double-Blind, Randomized Multicenter Study

Carmen Lorenzo; Henrique Bunselmeyer Ferreira; Karina Mariante Monteiro; Mara Rosenzvit; Laura Kamenetzky; Hector H. Garcia; Yessika Vasquez; César Náquira; Elizabeth Sánchez; Myriam Lorca; Contreras Mc; Gualberto González-Sapienza

ABSTRACT The serodiagnosis of hydatid disease is a valuable instrument for clinical diagnosis and epidemiological surveillance of high-risk populations. In the past decade a wealth of reports on the diagnostic performance of numerous antigens have been produced. However, their diagnostic value has been estimated under different conditions, using different serum collection, therefore precluding their direct comparison. Here we report an unbiased comparison of the same batch of six major E. granulosus antigens, namely, hydatid cyst fluid (HCF), native antigen B (AgB), two recombinant AgB subunits, an AgB-derived synthetic peptide, and recombinant cytosolic malate dehydrogenase from E. granulosus (EgMDH), against the same serum collection. The double-blind analysis was performed using a standardized protocol and receiver operating characteristic (ROC) data analysis by a network of six South American laboratories. High intercenter reproducibility was attained, and the intralaboratory analysis allowed the comparative ranking of the antigen panel. HCF, AgB, and its AgB8/1 subunit exhibited equivalent diagnostic efficiencies, 81.4% ± 0.5%, 81.3% ± 0.6%, and 81.9% ± 2.0%, respectively; with a more favorable balance toward specificity in the case of the last antigen. The diagnostic efficiencies for the other three antigens were 76.8% ± 6.8%, 69.1% ± 2.7%, and 66.8% ± 2.1%, for the peptide, the AgB8/2 subunit, and the EgMDH, respectively. The study also included an analysis of batch-to-batch variation in the diagnostic performance of different HCF regional preparations. Based on these results, a suggested recommendation on the use of these antigens was drawn.


PLOS Neglected Tropical Diseases | 2012

A Transcriptomic Analysis of Echinococcus granulosus Larval Stages: Implications for Parasite Biology and Host Adaptation

John Parkinson; James D. Wasmuth; Gustavo Salinas; Cristiano Valim Bizarro; Chris Sanford; Matthew Berriman; Henrique Bunselmeyer Ferreira; Arnaldo Zaha; Mark Blaxter; Rick M. Maizels; Cecilia Fernández

Background The cestode Echinococcus granulosus - the agent of cystic echinococcosis, a zoonosis affecting humans and domestic animals worldwide - is an excellent model for the study of host-parasite cross-talk that interfaces with two mammalian hosts. To develop the molecular analysis of these interactions, we carried out an EST survey of E. granulosus larval stages. We report the salient features of this study with a focus on genes reflecting physiological adaptations of different parasite stages. Methodology/Principal Findings We generated ∼10,000 ESTs from two sets of full-length enriched libraries (derived from oligo-capped and trans-spliced cDNAs) prepared with three parasite materials: hydatid cyst wall, larval worms (protoscoleces), and pepsin/H+-activated protoscoleces. The ESTs were clustered into 2700 distinct gene products. In the context of the biology of E. granulosus, our analyses reveal: (i) a diverse group of abundant long non-protein coding transcripts showing homology to a middle repetitive element (EgBRep) that could either be active molecular species or represent precursors of small RNAs (like piRNAs); (ii) an up-regulation of fermentative pathways in the tissue of the cyst wall; (iii) highly expressed thiol- and selenol-dependent antioxidant enzyme targets of thioredoxin glutathione reductase, the functional hub of redox metabolism in parasitic flatworms; (iv) candidate apomucins for the external layer of the tissue-dwelling hydatid cyst, a mucin-rich structure that is critical for survival in the intermediate host; (v) a set of tetraspanins, a protein family that appears to have expanded in the cestode lineage; and (vi) a set of platyhelminth-specific gene products that may offer targets for novel pan-platyhelminth drug development. Conclusions/Significance This survey has greatly increased the quality and the quantity of the molecular information on E. granulosus and constitutes a valuable resource for gene prediction on the parasite genome and for further genomic and proteomic analyses focused on cestodes and platyhelminths.


BMC Genomics | 2013

New insights on the biology of swine respiratory tract mycoplasmas from a comparative genome analysis

Franciele Maboni Siqueira; Claudia E. Thompson; Veridiana Gomes Virginio; Taylor Gonchoroski; Luciano Antonio Reolon; Luiz Gonzaga Paula de Almeida; Marbella Maria Fonseca; Rangel Celso Souza; Francisco Prosdocimi; Irene Silveira Schrank; Henrique Bunselmeyer Ferreira; Ana Tereza Ribeiro de Vasconcelos; Arnaldo Zaha

BackgroundMycoplasma hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis live in swine respiratory tracts. M. flocculare, a commensal bacterium, is genetically closely related to M. hyopneumoniae, the causative agent of enzootic porcine pneumonia. M. hyorhinis is also pathogenic, causing polyserositis and arthritis. In this work, we present the genome sequences of M. flocculare and M. hyopneumoniae strain 7422, and we compare these genomes with the genomes of other M. hyoponeumoniae strain and to the a M. hyorhinis genome. These analyses were performed to identify possible characteristics that may help to explain the different behaviors of these species in swine respiratory tracts.ResultsThe overall genome organization of three species was analyzed, revealing that the ORF clusters (OCs) differ considerably and that inversions and rearrangements are common. Although M. flocculare and M. hyopneumoniae display a high degree of similarity with respect to the gene content, only some genomic regions display considerable synteny. Genes encoding proteins that may be involved in host-cell adhesion in M. hyopneumoniae and M. flocculare display differences in genomic structure and organization. Some genes encoding adhesins of the P97 family are absent in M. flocculare and some contain sequence differences or lack of domains that are considered to be important for adhesion to host cells. The phylogenetic relationship of the three species was confirmed by a phylogenomic approach. The set of genes involved in metabolism, especially in the uptake of precursors for nucleic acids synthesis and nucleotide metabolism, display some differences in copy number and the presence/absence in the three species.ConclusionsThe comparative analyses of three mycoplasma species that inhabit the swine respiratory tract facilitated the identification of some characteristics that may be related to their different behaviors. M. hyopneumoniae and M. flocculare display many differences that may help to explain why one species is pathogenic and the other is considered to be commensal. However, it was not possible to identify specific virulence determinant factors that could explain the differences in the pathogenicity of the analyzed species. The M. hyorhinis genome contains differences in some components involved in metabolism and evasion of the host’s immune system that may contribute to its growth aggressiveness. Several horizontal gene transfer events were identified. The phylogenomic analysis places M. hyopneumoniae, M. flocculare and M. hyorhinis in the hyopneumoniae clade.


Development | 2003

The Caenorhabditis elegans spalt-like gene sem-4 restricts touch cell fate by repressing the selector Hox gene egl-5 and the effector gene mec-3.

Anne S. Toker; Yingqi Teng; Henrique Bunselmeyer Ferreira; Scott W. Emmons; Martin Chalfie

Members of the spalt (sal) gene family encode zinc-finger proteins that are putative tumor suppressors and regulate anteroposterior (AP) patterning, cellular identity, and, possibly, cell cycle progression. The mechanism through which sal genes carry out these functions is unclear. The Caenorhabditis elegans sal gene sem-4 controls the fate of several different cell types, including neurons, muscle and hypodermis. Mutation of sem-4 transforms particular tail neurons into touch-neuron-like cells. In wild-type C. elegans, six touch receptor neurons mediate the response of the worm to gentle touch. All six touch neurons normally express the LIM homeobox gene mec-3. A subset, the two PLM cells, also express the Hox gene egl-5, an Abdominal-B homolog, which we find is required for correct mec-3 expression in these cells. The abnormal touch-neuron-like-cells in sem-4 animals express mec-3; we show that a subset also express egl-5. We report: (1) that ectopic expression of sem-4 in normal touch cells represses mec-3 expression and reduces touch cell function; (2) that egl-5 expression is required for both the fate of normal PLM touch neurons in wild-type animals and the fate of a subset of abnormal touch neurons in sem-4 animals, and (3) that SEM-4 specifically binds a shared motif in the mec-3 and egl-5 promoters that mediates repression of these genes in cells in the tail. We conclude that sem-4 represses egl-5 and mec-3 through direct interaction with regulatory sequences in the promoters of these genes, that sem-4 indirectly modulates mec-3 expression through its repression of egl-5 and that this negative regulation is required for proper determination of neuronal fates. We suggest that the mechanism and targets of regulation by sem-4 are conserved throughout the sal gene family: other sal genes might regulate patterning and cellular identity through direct repression of Hox selector genes and effector genes.


Proteome Science | 2009

Comparative proteomic analysis of pathogenic and non-pathogenic strains from the swine pathogen Mycoplasma hyopneumoniae

Paulo Marcos Pinto; Catia Silene Klein; Arnaldo Zaha; Henrique Bunselmeyer Ferreira

BackgroundMycoplasma hyopneumoniae is a highly infectious swine pathogen and is the causative agent of enzootic pneumonia (EP). Following the previous report of a proteomic survey of the pathogenic 7448 strain of swine pathogen, Mycoplasma hyopneumoniae, we performed comparative protein profiling of three M. hyopneumoniae strains, namely the non-pathogenic J strain and the two pathogenic strains 7448 and 7422.ResultsIn 2DE comparisons, we were able to identify differences in expression levels for 67 proteins, including the overexpression of some cytoadherence-related proteins only in the pathogenic strains. 2DE immunoblot analyses allowed the identification of differential proteolytic cleavage patterns of the P97 adhesin in the three strains. For more comprehensive protein profiling, an LC-MS/MS strategy was used. Overall, 35% of the M. hyopneumoniae genome coding capacity was covered. Partially overlapping profiles of identified proteins were observed in the strains with 81 proteins identified only in one strain and 54 proteins identified in two strains. Abundance analysis of proteins detected in more than one strain demonstrates the relative overexpression of 64 proteins, including the P97 adhesin in the pathogenic strains.ConclusionsOur results indicate the physiological differences between the non-pathogenic strain, with its non-infective proliferate lifestyle, and the pathogenic strains, with its constitutive expression of adhesins, which would render the bacterium competent for adhesion and infection prior to host contact.


Journal of Parasitology | 2003

IN VITRO SEGMENTATION INDUCTION OF MESOCESTOIDES CORTI (CESTODA) TETRATHYRIDIA

Melissa Medeiros Markoski; Cristiano Valim Bizarro; Sandra Estrazulas Farias; Ingrid Espinoza; Norbel Galanti; Arnaldo Zaha; Henrique Bunselmeyer Ferreira

Mesocestoides corti is a suitable model for studying cestode development because of its ability to reproduce asexually and segment in vitro. The cultured parasite is also capable of sexual differentiation and, probably, reproduction. To establish conditions that increase the efficiency of in vitro M. corti larvae (tetrathyridia) segmentation, we tested the effects of an inducing agent and some physical parameters in cultures. We found that a 5% CO2–95% N2 gas phase, an incubation temperature of 39 C (instead of 37 C), and a 24-hr pretreatment with trypsin (105 BAEE/ml, BAEE = Nα-benzoil-l-arginine ethyl ester unit of trypsin activity) in Roswell Park Memorial Institute (RPMI) 1640 medium supplemented with 20% fetal bovine serum (FBS) are able to increase individually or synergistically the segmentation rate of tetrathyridia. A segmentation rate of up to 100% was achieved on day 4 of culture, when all these conditions were used simultaneously, in comparison with an average rate of 40% obtained not before day 11 in cultures without any inducing treatment. Fetal bovine serum is essential for segmentation, and a concentration of 20% was established as the standard for induction.

Collaboration


Dive into the Henrique Bunselmeyer Ferreira's collaboration.

Top Co-Authors

Avatar

Arnaldo Zaha

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Karina Mariante Monteiro

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Veridiana Gomes Virginio

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Cristiano Valim Bizarro

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Karina Rodrigues Lorenzatto

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Jéssica Andrade Paes

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Marilise Brittes Rott

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Sandra Estrazulas Farias

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriela Prado Paludo

Universidade Federal do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge