Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jéssica Andrade Paes is active.

Publication


Featured researches published by Jéssica Andrade Paes.


Veterinary Microbiology | 2012

Mycoplasma hyopneumoniae type I signal peptidase: Expression and evaluation of its diagnostic potential

Lucas Moitinho-Silva; Bianca Lúcia Heineck; Luciano Antonio Reolon; Jéssica Andrade Paes; Catia Silene Klein; Raquel Rebelatto; Irene Silveira Schrank; Arnaldo Zaha; Henrique Bunselmeyer Ferreira

Type I signal peptidase (SPase I) is a membrane-anchored protease of the general secretory pathway, which is encoded by the sipS gene in Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia (PEP). In this study, the expression of the M. hyopneumoniae SPase I (MhSPase I) was analyzed in virulent and avirulent strains, and the recombinant protein (rMhSPase I), expressed in Escherichia coli, was evaluated regarding its potential as an immunodiagnostic antigen. It was demonstrated that the sipS coding DNA sequence (CDS) is most likely part of an operon, being co-transcribed along with four other CDSs. Quantitative reverse transcriptase PCR and immunoblot assays showed that MhSPase I is expressed by all three strains analyzed, with no transcriptional difference, but with evidence of a higher protein level in a pathogenic strain (7422), in comparison to another pathogenic (7448) and a non-pathogenic (J) strain. rMhSPase I was strongly immunogenic for mice, and the MhSPase I antigenicity was confirmed. Polyclonal serum anti-rMhSPase I presented no detectable cross-reaction with Mycoplasma flocculare and Mycoplasma hyorhinis. Moreover, phylogenetic analysis demonstrated a low conservation between MhSPase I and orthologous proteins from other porcine respiratory disease complex-related bacteria, Firmicutes and other Mycoplasma species. The potential of an rMhSPase I-based ELISA for PEP immunodiagnosis was demonstrated. Overall, we investigated the expression of sipS and the encoded MhSPase I in three M. hyopneumoniae strains and showed that this protein is a good antigen for use in PEP serodiagnosis and possibly vaccination, as well as a potential target for antibiotic development.


Journal of Proteomics | 2017

Secretomes of Mycoplasma hyopneumoniae and Mycoplasma flocculare reveal differences associated to pathogenesis

Jéssica Andrade Paes; Karina Rodrigues Lorenzatto; Sofia Nóbrega De Moraes; Hercules Moura; John R. Barr; Henrique Bunselmeyer Ferreira

Mycoplasma hyopneumoniae and Mycoplasma flocculare cohabit the porcine respiratory tract. However, M. hyopneumoniae causes the porcine enzootic pneumonia, while M. flocculare is a commensal bacterium. Comparative analyses demonstrated high similarity between these species, which includes the sharing of all predicted virulence factors. Nevertheless, studies related to soluble secretomes of mycoplasmas were little known, although they are important for bacterial-host interactions. The aim of this study was to perform a comparative analysis between the soluble secreted proteins repertoires of the pathogenic Mycoplasma hyopneumoniae and its closely related commensal Mycoplasma flocculare. For that, bacteria were cultured in medium with reduced serum concentration and secreted proteins were identified by a LC-MS/MS proteomics approach. Altogether, 62 and 26 proteins were identified as secreted by M. hyopneumoniae and M. flocculare, respectively, being just seven proteins shared between these bacteria. In M. hyopneumoniae secretome, 15 proteins described as virulence factors were found; while four putative virulence factors were identified in M. flocculare secretome. For the first time, clear differences related to virulence were found between these species, helping to elucidate the pathogenic nature of M. hyopneumoniae to swine hosts. BIOLOGICAL SIGNIFICANCE For the first time, the secretomes of two porcine respiratory mycoplasmas, namely the pathogenic M. hyopneumoniae and the commensal M. flocculare were compared. The presented results revealed previously unknown differences between these two genetically related species, some of which are associated to the M. hyopneumoniae ability to cause porcine enzootic pneumonia.


Vaccine | 2014

Immune responses elicited by Mycoplasma hyopneumoniae recombinant antigens and DNA constructs with potential for use in vaccination against porcine enzootic pneumonia.

Veridiana Gomes Virginio; Taylor Gonchoroski; Jéssica Andrade Paes; Desirée Cigaran Schuck; Arnaldo Zaha; Henrique Bunselmeyer Ferreira

Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (PEP) and causes major economic losses to the pig industry worldwide. Commercially available vaccines provide only partial protection and are relatively expensive. In this study, we assessed the humoral and cellular immune responses to three recombinant antigens of M. hyopneumoniae. Immune responses to selected domains of the P46, HSP70 and MnuA antigens (P46102-253, HSP70212-601 and MnuA182-378), delivered as recombinant subunit or DNA vaccines, were evaluated in BALB/c mice. All purified recombinant antigens and two DNA vaccines, pcDNA3.1(+)/HSP70212-601 and pcDNA3.1(+)/MnuA182-378, elicited a strong humoral immune response, indicated by high IgG levels in the serum. The cellular immune response was assessed by detection of IFN-γ, IL-10 and IL-4 in splenocyte culture supernatants. The recombinant subunit and DNA vaccines induced Th1-polarized immune responses, as evidenced by increased levels of IFN-γ. All recombinant subunit vaccines and the pcDNA3.1(+)/MnuA182-378 vaccine also induced the secretion of IL-10, a Th2-type cytokine, in large quantities. The mixed Th1/Th2-type response may elicit an effective immune response against M. hyopneumoniae, suggesting that P46102-253, HSP70212-601 and MnuA182-378 are potential novel and promising targets for the development of vaccines against PEP.


Veterinary Microbiology | 2013

Mycoplasma hyopneumoniae in vitro peptidase activities: Identification and cleavage of kallikrein-kinin system-like substrates

Lucas Moitinho-Silva; Marcia Y. Kondo; Lilian C.G. Oliveira; Debora N. Okamoto; Jéssica Andrade Paes; Maurício F.M. Machado; Camila Lopes Veronez; Guacyara Motta; Sheila Siqueira Andrade; Maria A. Juliano; Henrique Bunselmeyer Ferreira; Luiz Juliano; Iuri E. Gouvea

Bacterial proteases are important for metabolic processes and pathogenesis in host organisms. The bacterial swine pathogen Mycoplasma hyopneumoniae has 15 putative protease-encoding genes annotated, but none of them have been functionally characterized. To identify and characterize peptidases that could be relevant for infection of swine hosts, we investigated the peptidase activity present in the pathogenic 7448 strain of M. hyopneumoniae. Combinatorial libraries of fluorescence resonance energy transfer peptides, specific inhibitors and pH profiling were used to screen and characterize endopeptidase, aminopeptidase and carboxypeptidase activities in cell lysates. One metalloendopeptidase, one serine endopeptidase, and one aminopeptidase were detected. The detected metalloendopeptidase activity, prominent at neutral and basic pH ranges, was due to a thimet oligopeptidase family member (M3 family), likely an oligoendopeptidase F (PepF), which cleaved the peptide Abz-GFSPFRQ-EDDnp at the F-S bond. A chymotrypsin-like serine endopeptidase activity, possibly a subtilisin-like serine protease, was prominent at higher pH levels, and was characterized by its preference for a Phe residue at the P1 position of the substrate. The aminopeptidase P (APP) activity showed a similar profile to that of human membrane-bound APP. Genes coding for these three peptidases were identified and their transcription was confirmed in the 7448 strain. Furthermore, M. hyopneumoniae cell lysate peptidases showed effects on kallikrein-kinin system-like substrates, such as bradykinin-derived substrates and human high molecular weight kininogen. The M. hyopneumoniae peptidase activities, here characterized for the first time, may be important for bacterial survival strategies and thus represent possible targets for drug development against M. hyopneumoniae swine infections.


Veterinary Microbiology | 2016

Mycoplasma hyopneumoniae and Mycoplasma flocculare differential domains from orthologous surface proteins induce distinct cellular immune responses in mice

Fernanda Munhoz dos Anjos Leal; Veridiana Gomes Virginio; Carolina Lumertz Martello; Jéssica Andrade Paes; Thiago J. Borges; Natália Jaeger; Cristina Bonorino; Henrique Bunselmeyer Ferreira

Mycoplasma hyopneumoniae and Mycoplasma flocculare are two genetically close species found in the swine respiratory tract. Despite their similarities, while M. hyopneumoniae is the causative agent of porcine enzootic pneumonia, M. flocculare is a commensal bacterium. Genomic and transcriptional comparative analyses so far failed to explain the difference in pathogenicity between these two species. We then hypothesized that such difference might be, at least in part, explained by amino acid sequence and immunological or functional differences between ortholog surface proteins. In line with that, it was verified that approximately 85% of the ortholog surface proteins from M. hyopneumoniae 7448 and M. flocculare present one or more differential domains. To experimentally assess possible immunological implications of this kind of difference, the extracellular differential domains from one pair of orthologous surface proteins (MHP7448_0612, from M. hyopneumoniae, and MF_00357, from M. flocculare) were expressed in E. coli and used to immunize mice. The recombinant polypeptides (rMHP61267-169 and rMF35767-196, respectively) induced distinct cellular immune responses. While, rMHP61267-169 induced both Th1 and Th2 responses, rMF35767-196 induced just an early pro-inflammatory response. These results indicate that immunological properties determined by differential domains in orthologous surface protein might play a role in pathogenicity, contributing to elicit specific and differential immune responses against each species.


Veterinary Microbiology | 2017

Pro-apoptotic effect of a Mycoplasma hyopneumoniae putative type I signal peptidase on PK(15) swine cells

Jéssica Andrade Paes; Veridiana Gomes Virginio; Martín Cancela; Fernanda Munhoz dos Anjos Leal; Thiago J. Borges; Natália Jaeger; Cristina Bonorino; Irene Silveira Schrank; Henrique Bunselmeyer Ferreira

Mycoplasma hyopneumoniae is an economically significant swine pathogen that causes porcine enzootic pneumonia (PEP). Important processes for swine infection by M. hyopneumoniae depend on cell surface proteins, many of which are secreted by secretion pathways not completely elucidated so far. A putative type I signal peptidase (SPase I), a possible component of a putative Sec-dependent pathway, was annotated as a product of the sipS gene in the pathogenic M. hyopneumoniae 7448 genome. This M. hyopneumoniae putative SPase I (MhSPase I) displays only 14% and 23% of sequence identity/similarity to Escherichia coli bona fide SPase I, and, in complementation assays performed with a conditional E. coli SPase I mutant, only a partial restoration of growth was achieved with the heterologous expression of a recombinant MhSPase I (rMhSPase I). Considering the putative surface location of MhSPase I and its previously demonstrated capacity to induce a strong humoral response, we then assessed its potential to elicit a cellular and possible immunomodulatory response. In assays for immunogenicity assessment, rMhSPase I unexpectedly showed a cytotoxic effect on murine splenocytes. This cytotoxic effect was further confirmed using the swine epithelial PK(15) cell line in MTT and annexin V-flow cytometry assays, which showed that rMhSPase I induces apoptosis in a dose dependent-way. It was also demonstrated that this pro-apoptotic effect of rMhSPase I involves activation of a caspase-3 cascade. The potential relevance of the rMhSPase I pro-apoptotic effect for M. hyopneumoniae-host interactions in the context of PEP is discussed.


Virulence | 2018

Comparative proteomics of two Mycoplasma hyopneumoniae strains and Mycoplasma flocculare identified potential porcine enzootic pneumonia determinants

Jéssica Andrade Paes; Lais Del Prá Netto Machado; Fernanda Munhoz dos Anjos Leal; Sofia Nóbrega De Moraes; Hercules Moura; John R. Barr; Henrique Bunselmeyer Ferreira

ABSTRACT Mycoplasma hyopneumoniae and Mycoplasma flocculare are genetically similar bacteria, which coinhabit the porcine respiratory tract. These mycoplasmas share most of the known virulence factors, but, while M. hyopneumoniae causes porcine enzootic pneumonia (PEP), M. flocculare is a commensal species. To identify potential PEP determinants and provide novel insights on mycoplasma-host interactions, the whole cell proteomes of two M. hyopneumoniae strains, one pathogenic (7448) and other non-pathogenic (J), and M. flocculare were compared. A cell fractioning approach combined with mass spectrometry (LC-MS/MS) proteomics was used to analyze cytoplasmic and surface-enriched protein fractions. Average detection of ~ 50% of the predicted proteomes of M. hyopneumoniae 7448 and J, and M. flocculare was achieved. Many of the identified proteins were differentially represented in M. hyopneumoniae 7448 in comparison to M. hyopneumoniae J and M. flocculare, including potential PEP determinants, such as adhesins, proteases, and redox-balancing proteins, among others. The LC-MS/MS data also provided experimental validation for several genes previously regarded as hypothetical for all analyzed mycoplasmas, including some coding for proteins bearing virulence-related functional domains. The comprehensive proteome profiling of two M. hyopneumoniae strains and M. flocculare provided tens of novel candidates to PEP determinants or virulence factors, beyond those classically described.


Molecular Genetics and Genomics | 2017

Evolution and function of the Mycoplasma hyopneumoniae peroxiredoxin, a 2-Cys-like enzyme with a single Cys residue

Taylor Gonchoroski; Veridiana Gomes Virginio; Claudia E. Thompson; Jéssica Andrade Paes; Claudio Xavier Machado; Henrique Bunselmeyer Ferreira

The minimal genome of the mollicute Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia, encodes a limited repertoire of antioxidant enzymes that include a single and atypical peroxiredoxin (MhPrx), whose evolution and function were studied here. MhPrx has only one catalytic cysteine, in contrast with some of its possible ancestors (2-Cys peroxiredoxins), which have two. Although it is more similar to 2-Cys orthologs, MhPrx can still function with a single peroxidatic cysteine (CysP), using non-thiolic electron donors to reduce it. Therefore, MhPrx could be a representative of a possible group of 2-Cys peroxiredoxins, which have lost the resolving cysteine (CysR) residue without losing their catalytic properties. To further investigate MhPrx evolution, we performed a comprehensive phylogenetic analysis in the context of several bacterial families, including Prxs belonging to Tpx and AhpE families, shedding light on the evolutionary history of Mycoplasmataceae Prxs and giving support to the hypothesis of a relatively recent loss of the CysR within this family. Moreover, mutational analyses provided insights into MhPrx function with one, two, or without catalytic cysteines. While removal of the MhPrx putative CysP caused complete activity loss, confirming its catalytic role, the introduction of a second cysteine in a site correspondent to that of the CysR of a 2-Cys orthologue, as in the MhPrx supposed ancestral form, was compatible with enzyme activity. Overall, our phylogenetic and mutational studies support that MhPrx recently diverged from a 2-Cys Prx ancestor and pave the way for future studies addressing structural, functional, and evolutive aspects of peroxiredoxin subfamilies in Mollicutes and other bacteria.


Archive | 2013

Antígenos recombinantes de Mycoplasma hyopneumoniae para a formulação de vacinas baseadas em construções de DNA contra a pneumonia enzoótica suína

Jéssica Andrade Paes; Veridiana Gomes Virginio; Carolina Lumertz Martello; Rafaela Milan Bonotto; Arnaldo Zaha


Archive | 2013

Caracterização de proteínas recombinantes de Mycoplasma hyopneumoniae para a formulação de vacinas contra a pneumonia enzóotica suína

Rafaela Milan Bonotto; Veridiana Gomes Virginio; Jéssica Andrade Paes; Carolina Lumertz Martello; Arnaldo Zaha

Collaboration


Dive into the Jéssica Andrade Paes's collaboration.

Top Co-Authors

Avatar

Henrique Bunselmeyer Ferreira

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Veridiana Gomes Virginio

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Arnaldo Zaha

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Carolina Lumertz Martello

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Fernanda Munhoz dos Anjos Leal

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Taylor Gonchoroski

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Cristina Bonorino

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Irene Silveira Schrank

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Lucas Moitinho-Silva

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Natália Jaeger

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge