Henrique E. M. Nascimento
Smithsonian Tropical Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Henrique E. M. Nascimento.
Proceedings of the National Academy of Sciences of the United States of America | 2006
William F. Laurance; Henrique E. M. Nascimento; Susan G. Laurance; Ana Andrade; Jose E. L. S. Ribeiro; Juan Pablo Giraldo; Thomas E. Lovejoy; Richard Condit; Jérôme Chave; Kyle E. Harms; Sammya D'Angelo
Forest fragmentation is considered a greater threat to vertebrates than to tree communities because individual trees are typically long-lived and require only small areas for survival. Here we show that forest fragmentation provokes surprisingly rapid and profound alterations in Amazonian tree-community composition. Results were derived from a 22-year study of exceptionally diverse tree communities in 40 1-ha plots in fragmented and intact forests, which were sampled repeatedly before and after fragment isolation. Within these plots, trajectories of change in abundance were assessed for 267 genera and 1,162 tree species. Abrupt shifts in floristic composition were driven by sharply accelerated tree mortality and recruitment within ≈100 m of fragment margins, causing rapid species turnover and population declines or local extinctions of many large-seeded, slow-growing, and old-growth taxa; a striking increase in a smaller set of disturbance-adapted and abiotically dispersed species; and significant shifts in tree size distributions. Even among old-growth trees, species composition in fragments is being restructured substantially, with subcanopy species that rely on animal seed-dispersers and have obligate outbreeding being the most strongly disadvantaged. These diverse changes in tree communities are likely to have wide-ranging impacts on forest architecture, canopy-gap dynamics, plant–animal interactions, and forest carbon storage.
Ecology | 2006
William F. Laurance; Henrique E. M. Nascimento; Susan G. Laurance; Ana Andrade; Philip M. Fearnside; Jose E. L. S. Ribeiro; Robson L. Capretz
The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. Over a 20-year period we monitored the density of 52 tree species in nine predominantly successional genera (Annona, Bellucia, Cecropia, Croton, Goupia, Jacaranda, Miconia, Pourouma, Vismia) in fragmented and continuous Amazonian forests. We also evaluated the relative importance of soil, topographic, forest dynamic, and landscape variables in explaining the abundance and species composition of successional trees. Data were collected within 66 permanent 1-ha plots within a large (approximately 1000 km2) experimental landscape, with forest fragments ranging from 1 to 100 ha in area. Prior to forest fragmentation, successional trees were uncommon, typically comprising 2-3% of all trees (> or =10 cm diameter at breast height [1.3 m above the ground surface]) in each plot. Following fragmentation, the density and basal area of successional trees increased rapidly. By 13-17 years after fragmentation, successional trees had tripled in abundance in fragment and edge plots and constituted more than a quarter of all trees in some plots. Fragment age had strong, positive effects on the density and basal area of successional trees, with no indication of a plateau in these variables, suggesting that successional species could become even more abundant in fragments over time. Nonetheless, the 52 species differed greatly in their responses to fragmentation and forest edges. Some disturbance-favoring pioneers (e.g., Cecropia sciadophylla, Vismia guianensis, V. amazonica, V. bemerguii, Miconia cf. crassinervia) increased by >1000% in density on edge plots, whereas over a third (19 of 52) of all species remained constant or declined in numbers. Species responses to fragmentation were effectively predicted by their median growth rate in nearby intact forest, suggesting that faster-growing species have a strong advantage in forest fragments. An ordination analysis revealed three main gradients in successional-species composition across our study area. Species gradients were most strongly influenced by the standlevel rate of tree mortality on each plot and by the number of nearby forest edges. Species-composition also varied significantly among different cattle ranches, which differed in their surrounding matrices and disturbance histories. These same variables were also the best predictors of total successional-tree abundance and species richness. Successional-tree assemblages in fragment interior plots (>150 m from edge), which are subjected to fragment area effects but not edge effects, did not differ significantly from those in intact forest, indicating that area effects per se had little influence on successional trees. Soils and topography also had little discernable effect on these species. Collectively, our results indicate that successional-tree species proliferate rapidly in fragmented Amazonian forests, largely as a result of chronically elevated tree mortality near forest edges and possibly an increased seed rain from successional plants growing in nearby degraded habitats. The proliferation of fast-growing successional trees and correlated decline of old-growth trees will have important effects on species composition, forest dynamics, carbon storage, and nutrient cycling in fragmented forests.
Nature | 2004
William F. Laurance; Alexandre A. Oliveira; Susan G. Laurance; Richard Condit; Henrique E. M. Nascimento; Ana Sanchez-Thorin; Thomas E. Lovejoy; Ana Andrade; Sammya D'Angelo; Jose E. L. S. Ribeiro; Christopher W. Dick
Amazonian rainforests are some of the most species-rich tree communities on earth. Here we show that, over the past two decades, forests in a central Amazonian landscape have experienced highly nonrandom changes in dynamics and composition. Our analyses are based on a network of 18 permanent plots unaffected by any detectable disturbance. Within these plots, rates of tree mortality, recruitment and growth have increased over time. Of 115 relatively abundant tree genera, 27 changed significantly in population density or basal area—a value nearly 14 times greater than that expected by chance. An independent, eight-year study in nearby forests corroborates these shifts in composition. Contrary to recent predictions, we observed no increase in pioneer trees. However, genera of faster-growing trees, including many canopy and emergent species, are increasing in dominance or density, whereas genera of slower-growing trees, including many subcanopy species, are declining. Rising atmospheric CO2 concentrations may explain these changes, although the effects of this and other large-scale environmental alterations remain uncertain. These compositional changes could have important impacts on the carbon storage, dynamics and biota of Amazonian forests.
PLOS ONE | 2007
William F. Laurance; Henrique E. M. Nascimento; Susan G. Laurance; Ana Andrade; Robert M. Ewers; Kyle E. Harms; Regina C. C. Luizão; Jose E. L. S. Ribeiro
Edge effects are major drivers of change in many fragmented landscapes, but are often highly variable in space and time. Here we assess variability in edge effects altering Amazon forest dynamics, plant community composition, invading species, and carbon storage, in the worlds largest and longest-running experimental study of habitat fragmentation. Despite detailed knowledge of local landscape conditions, spatial variability in edge effects was only partially foreseeable: relatively predictable effects were caused by the differing proximity of plots to forest edge and varying matrix vegetation, but windstorms generated much random variability. Temporal variability in edge phenomena was also only partially predictable: forest dynamics varied somewhat with fragment age, but also fluctuated markedly over time, evidently because of sporadic droughts and windstorms. Given the acute sensitivity of habitat fragments to local landscape and weather dynamics, we predict that fragments within the same landscape will tend to converge in species composition, whereas those in different landscapes will diverge in composition. This ‘landscape-divergence hypothesis’, if generally valid, will have key implications for biodiversity-conservation strategies and for understanding the dynamics of fragmented ecosystems.
Ecological Applications | 2004
Henrique E. M. Nascimento; William F. Laurance
Habitat fragmentation affects aboveground biomass in Amazonian forests, with potentially important implications for carbon storage and greenhouse gas emissions. We assessed the dynamics of aboveground-biomass stocks by combining long-term (10– 19 yr) data on mortality, damage, growth, and recruitment of large (≥10 cm diameter at breast height [dbh]) trees with measurements of nearly all other live and dead plant material (seedlings, saplings, small trees, palms, lianas, downed wood debris, snags, litter) in 50 1-ha plots in fragmented and continuous Amazonian forests. The key process altering biomass dynamics in fragmented forests is the chronically elevated mortality of large trees, which apparently results from microclimatic changes and increased wind turbulence near forest edges. This, in turn, accelerates the production of necromass and leads to significantly increased wood debris and litter on the forest floor. Near forest edges, frequent canopy disturbance increases the amount of light in the understory, resulting in accelerated tree recruitment, significantly higher biomass of small (5– 10 cm dbh) trees, and higher liana densities. Surprisingly, the estimated annual turnover of wood debris increases significantly near forest edges, suggesting that decomposition is occurring more rapidly in fragmented than continuous forests. These results reveal that habitat fragmentation fundamentally alters the distribution and dynamics of aboveground biomass in Amazonian forests. The rate of carbon cycling probably increases sharply, both because long-lived canopy and emergent trees decline in favor of shorter-lived successional trees and lianas, and because necromass production and turnover both appear to increase. Carbon storage in live vegetation also declines because small successional trees and lianas (which typically have low wood density) store substantially less carbon than do large, old-growth trees. Finally, the decline and rapid decay of live biomass in forest fragments may produce substantial atmospheric carbon emissions, above and beyond that resulting from deforestation per se.
Journal of Geophysical Research | 2008
Elizabeth Hammond Pyle; Gregory W. Santoni; Henrique E. M. Nascimento; Lucy R. Hutyra; Simone A. Vieira; Daniel J. Curran; Joost van Haren; Scott R. Saleska; V. Y. Chow; Plinio B. Carmago; William F. Laurance; Steven C. Wofsy
(1) Amazon forests are potentially globally significant sources or sinks for atmospheric carbon dioxide. In this study, we characterize the spatial trends in carbon storage and fluxes in both live and dead biomass (necromass) in two Amazonian forests, the Biological Dynamic of Forest Fragments Project (BDFFP), near Manaus, Amazonas, and the Tapajos National Forest (TNF) near Santarem, Para´. We assessed coarse woody debris (CWD) stocks, tree growth, mortality, and recruitment in ground-based plots distributed across the terra firme forest at both sites. Carbon dynamics were similar within each site, but differed significantly between the sites. The BDFFP and the TNF held comparable live biomass (167 ± 7.6 MgCha � 1 versus 149 ± 6.0 MgCha � 1 , respectively), but stocks of CWD were 2.5 times larger at TNF (16.2 ± 1.5 MgCha � 1 at BDFFP, versus 40.1 ± 3.9 MgCha � 1 at TNF). A model of current forest dynamics suggests that the BDFFP was close to carbon balance, and its size class structure approximated a steady state. The TNF, by contrast, showed rapid carbon accrual to live biomass (3.24 ± 0.22 MgCha � 1 � a � 1 in TNF, 2.59 ± 0.16 MgCha � 1 � a � 1 in BDFFP), which was more than offset by losses from large stocks of CWD, as well as ongoing shifts of biomass among size classes. This pattern in the TNF suggests recovery from a significant disturbance. The net loss of carbon from the TNF will likely last 10-15 years after the initial disturbance (controlled by the rate of decay of coarse woody debris), followed by uptake of carbon as the forest size class structure and composition continue to shift. The frequency and longevity of forests showing such disequilibruim dynamics within the larger matrix of the Amazon remains an essential question to understanding Amazonian carbon balance.
Journal of Vegetation Science | 2008
Stephanie A. Bohlman; William F. Laurance; Susan G. Laurance; Henrique E. M. Nascimento; Philip M. Fearnside; Ana Andrade
Abstract Question: What is the relative contribution of geographic distance, soil and topographic variables in determining the community floristic patterns and individual tree species abundances in the nutrient-poor soils of central Amazonia? Location: Central Amazonia near Manaus, Brazil. Methods: Our analysis was based on data for 1105 tree species (≥ 10 cm dbh) within 40 1-ha plots over a ca. 1000-km2 area. Slope and 26 soil-surface parameters were measured for each plot. A main soil-fertility gradient (encompassing soil texture, cation content, nitrogen and carbon) and five other uncorrelated soil and topographic variables were used as potential predictors of plant-community composition. Mantel tests and multiple regressions on distance matrices were used to detect relationships at the community level, and ordinary least square (OLS) and conditional autoregressive (CAR) models were used to detect relationships for individual species abundances. Results: Floristic similarity declined rapidly with distance over small spatial scales (0–5 km), but remained constant (ca. 44%) over distances of 5 to 30 km, which indicates lower beta diversity than in western Amazonian forests. Distance explained 1/3 to 1/2 more variance in floristics measures than environmental variables. Community composition was most strongly related to the main soil-fertility gradient and C:N ratio. The main fertility gradient and pH had the greatest impact of species abundances. About 30% of individual tree species were significantly related to one or more soil/topographic parameters. Conclusions: Geographic distance and the main fertility gradient are the best predictors of community floristic composition, but other soil variables, particularly C:N ratio, pH, and slope, have strong relationships with a significant portion of the tree community.
Journal of Vegetation Science | 2005
Henrique E. M. Nascimento; William F. Laurance; Richard Condit; Susan G. Laurance; Sammya D'Angelo; Ana C. S. Andrade
Abstract Questions: Which demographic and life-history differences are found among 95 sympatric tree species? Are there correlations among demographic parameters within this assemblage? Location: Central Amazonian rain forest. Methods: Using long-term data from 24 1-ha permanent plots, eight characteristics were estimated for each species: wood density, annual mortality rate, annual recruitment rate, mean stem diameter, maximum stem diameter, mean stem-growth rate, maximum stem-growth rate, population density. Results: An ordination analysis revealed that tree characteristics varied along two major axes of variation, the major gradient expressing light requirements and successional status, and the second gradient related to tree size. Along these gradients, four relatively discrete tree guilds could be distinguished: fast-growing pioneer species, shade-tolerant subcanopy species, canopy trees, and emergent species. Pioneers were uncommon and most trees were canopy or emergent species, which frequently had low mortality and recruitment. Wood density was negatively associated with tree mortality, recruitment, and growth rates when all species were considered. Growth rates varied markedly among and within species, with pioneers exhibiting far faster and less variable growth rates than did the other species. Slow growth in subcanopy species relative to canopy and emergent trees was not a simple consequence of mean tree size, but apparently resulted from physiological constraints imposed by low-light and other conditions in the forest understorey. Conclusions: Trees of Amazonian rain forests could be classified with some success into four relatively distinctive guilds. However, several demographic and life-history traits, such as those that distinguish early and late successional species, probably vary along a continuum, rather than being naturally grouped into relatively discrete categories. Nomenclature: Ribeiro et al. (1999). Abbreviation: BDFFP = Biological Dynamics of Forest Fragments Project.
The American Naturalist | 2006
Benjamin Gilbert; William F. Laurance; Egbert Giles Leigh; Henrique E. M. Nascimento
We use Hubbell’s neutral theory to predict the impact of habitat fragmentation on Amazonian tree communities. For forest fragments isolated for about two decades, we generate neutral predictions for local species extinction, changes in species composition within fragments, and increases in the probability that any two trees within a fragment are conspecific. We tested these predictions using fragment and intact forest data from the Biological Dynamics of Forest Fragments Project in central Amazonia. To simulate complete demographic isolation, we excluded immigrants—species absent from a fragment or intact forest plot in the initial census but present in its last census—from our tests. The neutral theory correctly predicted the rate of species extinction from different plots as a function of the diversity and mortality rate of trees in each plot. However, the rate of change in species composition was much faster than predicted in fragments, indicating that different tree species respond differently to environmental changes. This violates the key assumption of neutral theory. When immigrants were included in our calculations, they increased the disparity between predicted and observed changes in fragments. Overall, neutral theory accurately predicted the pace of local extinctions in fragments but consistently underestimated changes in species composition.
Acta Amazonica | 2006
Henrique E. M. Nascimento; William F. Laurance
Density and biomass of live trees >10 cm DBH and saplings 1-9.9 cm DBH, coarse woody debris (LCG diameter > 10 cm), fine woody debris (LCF diameter 2.5-9.9 cm), and standing dead trees (> 10 cm DBH) were quantified in 56 permanent, 1-ha sample plots. These plots are located in four 1- (4 plots), three 10- (12 plots) and two 100- (14 plots) forest fragments in size and nearby continuous forests (19 plots) as well as in two classes of distance from the edges - 300 m (21 plots). Density and biomass of primary species did not differ significantly among the four size categories and the two edge distance classes. However, forest fragments and distance 300 m from the edge, respectively. There were no significant differences among the size categories for standing dead trees. Forest fragments, however, had more quantity of LCG and LCF than did continuous forests. Moreover, distances 300 m. We performed an ANCOVA to assess whether differences in LCG and LCF in fragments were due to proximity of forest borders. An ANCOVA showed that there was no significant effect of fragment size on necromass, but a significant effect of edge distance on both LCG and LCF. The quantity of LCG and LCF was correlated negatively with edge distance sites close to the edge presented over 40-60% more LCG than sites far from the edges in both forest fragments and continuous forests.