Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henry C. Ferguson is active.

Publication


Featured researches published by Henry C. Ferguson.


The Astrophysical Journal | 2004

TYPE Ia SUPERNOVA DISCOVERIES AT Z > 1 FROM THE HUBBLE SPACE TELESCOPE: EVIDENCE FOR PAST DECELERATION AND CONSTRAINTS ON DARK ENERGY EVOLUTION 1

Adam G. Riess; Louis-Gregory Strolger; John L. Tonry; Stefano Casertano; Henry C. Ferguson; B. Mobasher; Peter M. Challis; Alexei V. Filippenko; Saurabh W. Jha; Weidong Li; Ryan Chornock; Robert P. Kirshner; Bruno Leibundgut; Mark Dickinson; Mario Livio; Mauro Giavalisco; Charles C. Steidel; Txitxo Benı́tez; Zlatan I. Tsvetanov

We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest redshift SNe Ia known, all at z > 1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these objects and to 170 previously reported SNe Ia have been determined using empirical relations between light-curve shape and luminosity. A purely kinematic interpretation of the SN Ia sample provides evidence at the greater than 99% confidence level for a transition from deceleration to acceleration or, similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13. The data are consistent with the cosmic concordance model of ΩM ≈ 0.3, ΩΛ ≈ 0.7 (χ = 1.06) and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat universe with a cosmological constant, we measure ΩM = 0.29 ± (equivalently, ΩΛ = 0.71). When combined with external flat-universe constraints, including the cosmic microwave background and large-scale structure, we find w = -1.02 ± (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = wρc2. Joint constraints on both the recent equation of state of dark energy, w0, and its time evolution, dw/dz, are a factor of ~8 more precise than the first estimates and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., w0 = -1.0, dw/dz = 0) and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the universe.


Monthly Notices of the Royal Astronomical Society | 1996

High-redshift galaxies in the Hubble Deep Field: colour selection and star formation history to z ∼ 4

Piero Madau; Henry C. Ferguson; Mark Dickinson; Mauro Giavalisco; Charles C. Steidel; Andrew S. Fruchter

The Lyman decrement associated with the cumulative effect of H I in QSO absorption systems along the line of sight provides a distinctive feature for identifying galaxies at z ≳ 2.5. Colour criteria, which are sensitive to the presence of a Lyman continuum break superposed on an otherwise flat UV spectrum, have been shown, through Keck spectroscopy, to successfully identify a substantial population of star-forming galaxies at 3 ≲ z ≲ 3.5. Such objects have proven to be surprisingly elusive in field galaxy redshift surveys; quantification of their surface densities and morphologies is crucial for determining how and when galaxies formed. The Hubble Deep Field (HDF) observations offer the opportunity to exploit the ubiquitous effect of intergalactic absorption and obtain useful statistical constraints on the redshift distribution of galaxies to considerably fainter limits than the current spectroscopic limits. We model the H I cosmic opacity as a function of redshift, including scattering in resonant lines of the Lyman series and Lyman continuum absorption, and use stellar population synthesis models with a wide variety of ages, metallicities, dust contents and redshifts to derive colour selection criteria that provide a robust separation between high-redshift and low-redshift galaxies. From the HDF images we construct a sample of star-forming galaxies at 2 ≲z ≲ 4.5. While none of the ∼ 60 objects in the HDF having known Keck/Low-Resolution Imaging Spectrograph (LRIS) spectroscopic redshifts in the range 0 ≲ z ≲1.4 is found to contaminate our high-redshift sample, our colour criteria are able to efficiently select the 2.6 ≲ z ≲ 3.2 galaxies identified by Steidel et al. The ultraviolet (and blue) dropout technique opens up the possibility of investigating cosmic star and element formation in the early Universe. We set a lower limit to the ejection rate of heavy elements per unit comoving volume from Type II supernovae at 〈z〉 = 2.75 of ≈ 3.6 × 10^(−4) M_⊙ yr^(−1) Mpc^(−3) (for q_0 = 0.5 and H_0 = 50 km s^(−1) Mpc^(−1)), which is 3 times higher than the local value but still 4 times lower than the rate observed at z ≈ 1. At 〈z〉 = 4, our lower limit to the cosmic metal ejection rate is ≈ 3 times lower than the 〈z〉 = 2.75 value. We discuss the implications of these results on models of galaxy formation, and on the chemical enrichment and ionization history of the intergalactic medium.


Astronomy and Astrophysics | 2013

Astropy: A community Python package for astronomy

Thomas P. Robitaille; Erik J. Tollerud; Perry Greenfield; Michael Droettboom; Erik Bray; T. Aldcroft; Matt Davis; Adam Ginsburg; Adrian M. Price-Whelan; Wolfgang Kerzendorf; A. Conley; Neil H. M. Crighton; Kyle Barbary; Demitri Muna; Henry C. Ferguson; Frédéric Grollier; Madhura Parikh; Prasanth H. Nair; H. M. Günther; C. Deil; Julien Woillez; Simon Conseil; Roban Hultman Kramer; James E. H. Turner; L. P. Singer; Ryan Fox; Benjamin A. Weaver; V. Zabalza; Zachary I. Edwards; K. Azalee Bostroem

We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions. Significant functionality is under active development, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools. The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions.


The Astrophysical Journal | 2007

New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy*

Adam G. Riess; Louis G. Strolger; Stefano Casertano; Henry C. Ferguson; B. Mobasher; Ben Gold; Peter J. Challis; Alexei V. Filippenko; Saurabh W. Jha; Weidong Li; John L. Tonry; Ryan J. Foley; Robert P. Kirshner; Mark Dickinson; Emily MacDonald; Daniel J. Eisenstein; Mario Livio; Josh Younger; Chun Xu; Tomas Dahlen; Daniel Stern

We have discovered 21 new Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to trace the history of cosmic expansion over the last 10 billion yr. These objects, which include 13 spectroscopicallyconfirmedSNeIaat z � 1,werediscoveredduring14epochsofreimagingoftheGOODSfieldsNorthand South over 2 yr with the Advanced Camera for Surveys on HST. Together with a recalibration of our previous HSTdiscovered SNe Ia, the full sample of 23 SNe Ia at z � 1 provides the highest redshift sample known. Combining these data with previous SN Ia data sets, we measured Hz ðÞ at discrete, uncorrelated epochs, reducing the uncertainty of Hz >1 ðÞ from 50% to under 20%, strengthening the evidence for a cosmic jerk—the transition from deceleration in the past to acceleration in thepresent. The uniqueleverage of theHSThigh-redshift SNe Ia provides thefirstmeaningful constraint on the dark energy equation-of-state parameter at z � 1. The result remains consistent with a cosmological constant [ wz ðÞ ¼� 1] and rules out rapidly evolving dark energy (dw/dz 31). The defining property of dark energy, its negative pressure, appears to be present at z > 1, in the epoch preceding acceleration, with � 98% confidenceinourprimaryfit.Moreover,thez > 1sample-averagedspectralenergydistributionisconsistentwiththat of thetypicalSNIaoverthelast10Gyr,indicatingthatanyspectralevolutionofthepropertiesof SNeIawithredshift is still below our detection threshold.


The Astrophysical Journal | 2004

The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging

Mauro Giavalisco; Henry C. Ferguson; Anton M. Koekemoer; Mark Dickinson; D. M. Alexander; F. E. Bauer; Jacqueline Bergeron; C. Biagetti; W. N. Brandt; Stefano Casertano; Catherine J. Cesarsky; Eleni T. Chatzichristou; Christopher J. Conselice; S. Cristiani; L. N. da Costa; Tomas Dahlen; Duilia Fernandes de Mello; Peter R. M. Eisenhardt; T. Erben; S. M. Fall; C. D. Fassnacht; Robert A. E. Fosbury; Andrew S. Fruchter; Jonathan P. Gardner; Norman A. Grogin; Richard N. Hook; A. E. Hornschemeier; Rafal Idzi; S. Jogee; Claudia Kretchmer

This special issue of the Astrophysical Journal Letters is dedicated to presenting initial results from the Great Observatories Origins Deep Survey (GOODS) that are primarily, but not exclusively, based on multiband imaging data obtained with the Hubble Space Telescope and the Advanced Camera for Surveys (ACS). The survey covers roughly 320 arcmin2 in the ACS F435W, F606W, F814W, and F850LP bands, divided into two well-studied fields. Existing deep observations from the Chandra X-Ray Observatory and ground-based facilities are supplemented with new, deep imaging in the optical and near-infrared from the European Southern Observatory and from the Kitt Peak National Observatory. Deep observations with the Space Infrared Telescope Facility are scheduled. Reduced data from all facilities are being released worldwide within 3-6 months of acquisition. Together, this data set provides two deep reference fields for studies of distant normal and active galaxies, supernovae, and faint stars in our own Galaxy. This Letter serves to outline the survey strategy and describe the specific data that have been used in the accompanying letters, summarizing the reduction procedures and sensitivity limits.


The Astronomical Journal | 1996

The Hubble Deep Field: Observations, data reduction, and galaxy photometry

Robert E. Williams; Henry C. Ferguson; W. Van Dyke Dixon; Mauro Giavalisco; Rocio Katsanis; Richard N. Hook; Larry Petro; Mark Dickinson; Brett S. Blacker; Marc Postman; Zolt Levay; Ray A. Lucas; Inge Heyer; Ronald L. Gilliland; Hans-Martin Adorf; Andrew S. Fruchter; Douglas Boyden McElroy

The Hubble Deep Field (HDF) is a Director’s Discretionary program on HST in Cycle 5 to image an undistinguished field at high Galactic latitude in four passbands as deeply as reasonably possible. These images provide the most detailed view to date of distant field galaxies and are likely to be important for a wide range of studies in galaxy evolution and cosmology. In order to optimize observing in the time available, a field in the northern continuous viewing zone was selected and images were taken for ten consecutive days, or approximately 150 orbits. Shorter 1-2 orbit images were obtained of the fields immediately adjacent to the primary HDF in order to facilitate spectroscopic follow-up by ground-based telescopes. The observations were made from 18 to 30 December 1995, and both raw and reduced data have been put in the public domain as a community service. We present a summary of the criteria for selecting the field, the rationale behind the filter selection and observing times in each band, and the strategies for planning the observations to maximize the exposure time while avoiding earth-scattered light. Data reduction procedures are outlined, and images of the combined frames in each band are presented. Objects detected in these images are listed in a catalog with their basic photometric parameters.


Astronomy and Astrophysics | 2011

GOODS–Herschel: an infrared main sequence for star-forming galaxies

D. Elbaz; M. Dickinson; H. S. Hwang; T. Díaz-Santos; G. Magdis; B. Magnelli; D. Le Borgne; F. Galliano; M. Pannella; P. Chanial; Lee Armus; V. Charmandaris; E. Daddi; H. Aussel; P. Popesso; J. Kartaltepe; B. Altieri; I. Valtchanov; D. Coia; H. Dannerbauer; K. Dasyra; R. Leiton; Joseph M. Mazzarella; D. M. Alexander; V. Buat; D. Burgarella; Ranga-Ram Chary; R. Gilli; R. J. Ivison; S. Juneau

We present the deepest 100 to 500 μm far-infrared observations obtained with the Herschel Space Observatory as part of the GOODS-Herschel key program, and examine the infrared (IR) 3–500 μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data. We determine the projected star formation densities of local galaxies from their radio and mid-IR continuum sizes. We find that the ratio of total IR luminosity to rest-frame 8 μm luminosity, IR8 (≡ L_(IR)^(tot)/L_8), follows a Gaussian distribution centered on IR8 = 4 (σ = 1.6) and defines an IR main sequence for star-forming galaxies independent of redshift and luminosity. Outliers from this main sequence produce a tail skewed toward higher values of IR8. This minority population (  3 × 10^(10) L_⊙ kpc^(-2)) and a high specific star formation rate (i.e., starbursts). The rest-frame, UV-2700 A size of these distant starbursts is typically half that of main sequence galaxies, supporting the correlation between star formation density and starburst activity that is measured for the local sample. Locally, luminous and ultraluminous IR galaxies, (U)LIRGs (L_(IR)^(tot)≥ 10^(11) L_☉), are systematically in the starburst mode, whereas most distant (U)LIRGs form stars in the “normal” main sequence mode. This confusion between two modes of star formation is the cause of the so-called “mid-IR excess” population of galaxies found at z > 1.5 by previous studies. Main sequence galaxies have strong polycyclic aromatic hydrocarbon (PAH) emission line features, a broad far-IR bump resulting from a combination of dust temperatures (T_(dust) ~ 15–50 K), and an effective T_(dust)  ~ 31 K, as derived from the peak wavelength of their infrared SED. Galaxies in the starburst regime instead exhibit weak PAH equivalent widths and a sharper far-IR bump with an effective T_(dust)~ 40 K. Finally, we present evidence that the mid-to-far IR emission of X-ray active galactic nuclei (AGN) is predominantly produced by star formation and that candidate dusty AGNs with a power-law emission in the mid-IR systematically occur in compact, dusty starbursts. After correcting for the effect of starbursts on IR8, we identify new candidates for extremely obscured AGNs.


The Astrophysical Journal | 2005

Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field*

Emanuele Daddi; Alvio Renzini; Norbert Pirzkal; A. Cimatti; Sangeeta Malhotra; Massimo Stiavelli; Cong Kevin Xu; Anna Pasquali; James E. Rhoads; M. Brusa; S. di Serego Alighieri; Henry C. Ferguson; Anton M. Koekemoer; Leonidas A. Moustakas; Nino Panagia; Rogier A. Windhorst

We report on a complete sample of seven luminous early-type galaxies in the Hubble Ultra Deep Field (UDF) with spectroscopic redshifts between 1.39 and 2.47, and to KAB 1:4. Low-resolution spectra of these objects have been extracted from the Hubble Space Telescope (HST) ACS grism data taken over the UDF by the Grism ACS Program for Extragalactic Science (GRAPES) project. Redshifts for the seven galaxies have been identified based on the UV feature at rest frame 2640 < k < 2850 8. This feature is mainly due to a combination of Fe ii ,M gi ,a nd Mgii absorptions, which are characteristic of stellar populations dominated by stars older than � 0.5 Gyr. The redshift identification and the passively evolvingnatureofthesegalaxiesisfurthersupportedbythephotometricredshiftsandbytheoverallspectralenergy distribution (SED), with the ultradeep HST ACS NICMOS imaging revealing compact morphologies typical of


Nature | 2006

Long gamma-ray bursts and core-collapse supernovae have different environments

Andrew S. Fruchter; Andrew J. Levan; Louis-Gregory Strolger; Paul M. Vreeswijk; S. E. Thorsett; D. F. Bersier; I. Burud; J. M. Castro Cerón; A. J. Castro-Tirado; Christopher J. Conselice; T. Dahlen; Henry C. Ferguson; J. P. U. Fynbo; Peter Marcus Garnavich; R. A. Gibbons; J. Gorosabel; T. R. Gull; J. Hjorth; S. T. Holland; C. Kouveliotou; Zoltan G. Levay; Mario Livio; M. R. Metzger; Peter E. Nugent; L. Petro; E. Pian; James E. Rhoads; Adam G. Riess; Kailash C. Sahu; Alain Smette

When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration γ-ray burst. One would then expect that these long γ-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the γ-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long γ-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration γ-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long γ-ray bursts are relatively rare in galaxies such as our own Milky Way.


The Astrophysical Journal | 2009

A REDETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE FROM A DIFFERENTIAL DISTANCE LADDER

Adam G. Riess; Lucas M. Macri; Stefano Casertano; Megan L. Sosey; Hubert Lampeitl; Henry C. Ferguson; Alexei V. Filippenko; Saurabh W. Jha; Weidong Li; Ryan Chornock; Devdeep Sarkar

This is the second of two papers reporting results from a program to determine the Hubble constant to ~5% precision from a refurbished distance ladder based on extensive use of differential measurements. Here we report observations of 240 Cepheid variables obtained with the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) Camera 2 through the F160W filter on the Hubble Space Telescope (HST). The Cepheids are distributed across six recent hosts of Type Ia supernovae (SNe Ia) and the maser galaxy NGC 4258, allowing us to directly calibrate the peak luminosities of the SNe Ia from the precise, geometric distance measurements provided by the masers. New features of our measurement include the use of the same instrument for all Cepheid measurements across the distance ladder and homogeneity of the Cepheid periods and metallicities, thus necessitating only a differential measurement of Cepheid fluxes and reducing the largest systematic uncertainties in the determination of the fiducial SN Ia luminosity. In addition, the NICMOS measurements reduce the effects of differential extinction in the host galaxies by a factor of ~5 over past optical data. Combined with a greatly expanded set of 240 SNe Ia at z < 0.1 which define their magnitude-redshift relation, we find H 0 = 74.2 ? 3.6 km s?1 Mpc?1, a 4.8% uncertainty including both statistical and systematic errors. To independently test the maser calibration, we use 10 individual parallax measurements of Galactic Cepheids obtained with the HST fine guidance sensor and find similar results. We show that the factor of 2.2 improvement in the precision of H 0 is a significant aid to the determination of the equation-of-state parameter of dark energy, w = P/(?c 2). Combined with the Wilkinson Microwave Anisotropy Probe five-year measurement of ? M h 2, we find w = ?1.12 ? 0.12 independent of any information from high-redshift SNe Ia or baryon acoustic oscillations (BAO). This result is also consistent with analyses based on the combination of high-redshift SNe Ia and BAO. The constraints on w(z) now including high-redshift SNe Ia and BAO are consistent with a cosmological constant and are improved by a factor of 3 due to the refinement in H 0 alone. We show that future improvements in the measurement of H 0 are likely and should further contribute to multi-technique studies of dark energy.

Collaboration


Dive into the Henry C. Ferguson's collaboration.

Top Co-Authors

Avatar

Anton M. Koekemoer

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Mauro Giavalisco

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Norman A. Grogin

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Mark Dickinson

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

S. M. Faber

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas M. Brown

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge