Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henry Houlden is active.

Publication


Featured researches published by Henry Houlden.


Nature | 1998

Association of missense and 5 '-splice-site mutations in tau with the inherited dementia FTDP-17

Mike Hutton; C. L. Lendon; P. Rizzu; M. Baker; S. Froelich; Henry Houlden; S. M. Pickering-Brown; S. Chakraverty; Adrian M. Isaacs; Andrew Grover; J. Hackett; Jennifer Adamson; Sarah Lincoln; Dennis W. Dickson; Peter Davies; Ronald C. Petersen; Martijn Stevens; E. De Graaff; E. Wauters; J. Van Baren; M. Hillebrand; M. Joosse; Jennifer M. Kwon; Petra Nowotny; Lien Kuei Che; Joanne Norton; John C. Morris; L. A. Reed; John Q. Trojanowski; Hans Basun

Thirteen families have been described with an autosomal dominantly inherited dementia named frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), historically termed Picks disease. Most FTDP-17 cases show neuronal and/or glial inclusions that stain positively with antibodies raised against the microtubule-associated protein Tau, although the Tau pathology varies considerably in both its quantity (or severity) and characteristics,. Previous studies have mapped the FTDP-17 locus to a 2-centimorgan region on chromosome 17q21.11; the tau gene also lies within this region. We have now sequenced tau in FTDP-17 families and identified three missense mutations (G272V, P301L and R406W) and three mutations in the 5′ splice site of exon 10. The splice-site mutations all destabilize a potential stem–loop structure which is probably involved in regulating the alternative splicing of exon10 (ref. 13). This causes more frequent usage of the 5′ splice site and an increased proportion of tau transcripts that include exon 10. The increase in exon 10+ messenger RNA will increase the proportion of Tau containing four microtubule-binding repeats, which is consistent with the neuropathology described in several families with FTDP-17 (refs 12, 14).


Nature Genetics | 2009

Genome-wide association study reveals genetic risk underlying Parkinson's disease

Javier Simón-Sánchez; Claudia Schulte; Jose Bras; Manu Sharma; J. Raphael Gibbs; Daniela Berg; Coro Paisán-Ruiz; Peter Lichtner; Sonja W. Scholz; Dena Hernandez; Rejko Krüger; Monica Federoff; Christine Klein; Alison Goate; Joel S. Perlmutter; Michael Bonin; Michael A. Nalls; Thomas Illig; Christian Gieger; Henry Houlden; Michael Steffens; Michael S. Okun; Brad A. Racette; Mark R. Cookson; Kelly D. Foote; Hubert H. Fernandez; Bryan J. Traynor; Stefan Schreiber; Sampath Arepalli; Ryan Zonozi

We performed a genome-wide association study (GWAS) in 1,713 individuals of European ancestry with Parkinsons disease (PD) and 3,978 controls. After replication in 3,361 cases and 4,573 controls, we observed two strong association signals, one in the gene encoding α-synuclein (SNCA; rs2736990, OR = 1.23, P = 2.24 × 10−16) and another at the MAPT locus (rs393152, OR = 0.77, P = 1.95 × 10−16). We exchanged data with colleagues performing a GWAS in Japanese PD cases. Association to PD at SNCA was replicated in the Japanese GWAS, confirming this as a major risk locus across populations. We replicated the effect of a new locus detected in the Japanese cohort (PARK16, rs823128, OR = 0.66, P = 7.29 × 10−8) and provide supporting evidence that common variation around LRRK2 modulates risk for PD (rs1491923, OR = 1.14, P = 1.55 × 10−5). These data demonstrate an unequivocal role for common genetic variants in the etiology of typical PD and suggest population-specific genetic heterogeneity in this disease.


Nature Genetics | 2014

Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease

Michael A. Nalls; Nathan Pankratz; Christina M. Lill; Chuong B. Do; Dena Hernandez; Mohamad Saad; Anita L. DeStefano; Eleanna Kara; Jose Bras; Manu Sharma; Claudia Schulte; Margaux F. Keller; Sampath Arepalli; Christopher Letson; Connor Edsall; Hreinn Stefansson; Xinmin Liu; Hannah Pliner; Joseph H. Lee; Rong Cheng; M. Arfan Ikram; John P. A. Ioannidis; Georgios M. Hadjigeorgiou; Joshua C. Bis; Maria Martinez; Joel S. Perlmutter; Alison Goate; Karen Marder; Brian K. Fiske; Margaret Sutherland

We conducted a meta-analysis of Parkinsons disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant association; these and 6 additional previously reported loci were then tested in an independent set of 5,353 cases and 5,551 controls. Of the 32 tested SNPs, 24 replicated, including 6 newly identified loci. Conditional analyses within loci showed that four loci, including GBA, GAK-DGKQ, SNCA and the HLA region, contain a secondary independent risk variant. In total, we identified and replicated 28 independent risk variants for Parkinsons disease across 24 loci. Although the effect of each individual locus was small, risk profile analysis showed substantial cumulative risk in a comparison of the highest and lowest quintiles of genetic risk (odds ratio (OR) = 3.31, 95% confidence interval (CI) = 2.55–4.30; P = 2 × 10−16). We also show six risk loci associated with proximal gene expression or DNA methylation.


Lancet Neurology | 2012

Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: A cross-sectional study

Elisa Majounie; Alan E. Renton; Kin Mok; Elise G.P. Dopper; Adrian James Waite; Sara Rollinson; Adriano Chiò; Gabriella Restagno; Nayia Nicolaou; Javier Simón-Sánchez; John C. van Swieten; Yevgeniya Abramzon; Janel O. Johnson; Michael Sendtner; Roger Pamphlett; Richard W. Orrell; Simon Mead; Katie Sidle; Henry Houlden; Jonathan D. Rohrer; Karen E. Morrison; Hardev Pall; Kevin Talbot; Olaf Ansorge; Dena Hernandez; Sampath Arepalli; Mario Sabatelli; Gabriele Mora; Massimo Corbo; Fabio Giannini

Summary Background We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Methods We screened 4448 patients diagnosed with ALS (El Escorial criteria) and 1425 patients with FTD (Lund-Manchester criteria) from 17 regions worldwide for the GGGGCC hexanucleotide expansion using a repeat-primed PCR assay. We assessed familial disease status on the basis of self-reported family history of similar neurodegenerative diseases at the time of sample collection. We compared haplotype data for 262 patients carrying the expansion with the known Finnish founder risk haplotype across the chromosomal locus. We calculated age-related penetrance using the Kaplan-Meier method with data for 603 individuals with the expansion. Findings In patients with sporadic ALS, we identified the repeat expansion in 236 (7·0%) of 3377 white individuals from the USA, Europe, and Australia, two (4·1%) of 49 black individuals from the USA, and six (8·3%) of 72 Hispanic individuals from the USA. The mutation was present in 217 (39·3%) of 552 white individuals with familial ALS from Europe and the USA. 59 (6·0%) of 981 white Europeans with sporadic FTD had the mutation, as did 99 (24·8%) of 400 white Europeans with familial FTD. Data for other ethnic groups were sparse, but we identified one Asian patient with familial ALS (from 20 assessed) and two with familial FTD (from three assessed) who carried the mutation. The mutation was not carried by the three Native Americans or 360 patients from Asia or the Pacific Islands with sporadic ALS who were tested, or by 41 Asian patients with sporadic FTD. All patients with the repeat expansion had (partly or fully) the founder haplotype, suggesting a one-off expansion occurring about 1500 years ago. The pathogenic expansion was non-penetrant in individuals younger than 35 years, 50% penetrant by 58 years, and almost fully penetrant by 80 years. Interpretation A common Mendelian genetic lesion in C9orf72 is implicated in many cases of sporadic and familial ALS and FTD. Testing for this pathogenic expansion should be considered in the management and genetic counselling of patients with these fatal neurodegenerative diseases. Funding Full funding sources listed at end of paper (see Acknowledgments).


The Journal of Physiology | 2008

A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS

Binith Cheeran; Penelope Talelli; Francesco Mori; Giacomo Koch; Antonio Suppa; Mark J. Edwards; Henry Houlden; Kailash P. Bhatia; Richard Greenwood; John C. Rothwell

The brain‐derived neurotrophic factor gene (BDNF) is one of many genes thought to influence synaptic plasticity in the adult brain and shows a common single nucleotide polymorphism (BDNF Val66Met) in the normal population that is associated with differences in hippocampal volume and episodic memory. It is also thought to influence possible synaptic changes in motor cortex following a simple motor learning task. Here we extend these studies by using new non‐invasive transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) techniques that directly test the excitability and plasticity of neuronal circuits in human motor cortex in subjects at rest. We investigated whether the susceptibility to TMS probes of plasticity is significantly influenced by the BDNF polymorphism. Val66Met carriers were matched with Val66Val individuals and tested on the following protocols: continuous and intermittent theta burst TMS; median nerve paired associative stimulation; and homeostatic plasticity in the TDCS/1 Hz rTMS model. The response of Met allele carriers differed significantly in all protocols compared with the response of Val66Val individuals. We suggest that this is due to the effect of BNDF on the susceptibility of synapses to undergo LTP/LTD. The circuits tested here are implicated in the pathophysiology of movement disorders such as dystonia and are being assessed as potential new targets in the treatment of stroke. Thus the polymorphism may be one factor that influences the natural response of the brain to injury and disease.


Brain | 2009

Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease

Juliane Neumann; Jose Bras; Emma Deas; Sean S. O'Sullivan; Laura Parkkinen; Robin H. Lachmann; Abi Li; Janice L. Holton; Rita Guerreiro; Reema Paudel; Badmavady Segarane; Andrew Singleton; Andrew J. Lees; John Hardy; Henry Houlden; Tamas Revesz; Nicholas W. Wood

Mutations in the glucocerebrosidase gene (GBA) are associated with Gauchers disease, the most common lysosomal storage disorder. Parkinsonism is an established feature of Gauchers disease and an increased frequency of mutations in GBA has been reported in several different ethnic series with sporadic Parkinsons disease. In this study, we evaluated the frequency of GBA mutations in British patients affected by Parkinsons disease. We utilized the DNA of 790 patients and 257 controls, matched for age and ethnicity, to screen for mutations within the GBA gene. Clinical data on all identified GBA mutation carriers was reviewed and analysed. Additionally, in all cases where brain material was available, a neuropathological evaluation was performed and compared to sporadic Parkinsons disease without GBA mutations. The frequency of GBA mutations among the British patients (33/790 = 4.18%) was significantly higher (P = 0.01; odds ratio = 3.7; 95% confidence interval = 1.12-12.14) when compared to the control group (3/257 = 1.17%). Fourteen different GBA mutations were identified, including three previously undescribed mutations, K7E, D443N and G193E. Pathological examination revealed widespread and abundant alpha-synuclein pathology in all 17 GBA mutation carriers, which were graded as Braak stage of 5-6, and had McKeiths limbic or diffuse neocortical Lewy body-type pathology. Diffuse neocortical Lewy body-type pathology tended to occur more frequently in the group with GBA mutations compared to matched Parkinsons disease controls. Clinical features comprised an early onset of the disease, the presence of hallucinations in 45% (14/31) and symptoms of cognitive decline or dementia in 48% (15/31) of patients. This study demonstrates that GBA mutations are found in British subjects at a higher frequency than any other known Parkinsons disease gene. This is the largest study to date on a non-Jewish patient sample with a detailed genotype/phenotype/pathological analyses which strengthens the hypothesis that GBA mutations represent a significant risk factor for the development of Parkinsons disease and suggest that to date, this is the most common genetic factor identified for the disease.


Neurology | 2001

Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype

Henry Houlden; Matt Baker; Huw R. Morris; N. MacDonald; Stuart Pickering-Brown; Jennifer Adamson; Andrew J. Lees; Niall Quinn; Andrew Kertesz; M. N. Khan; J Hardy; P. L. Lantos; P. St George-Hyslop; David G. Munoz; D. M. A. Mann; Anthony E. Lang; Catherine Bergeron; Eileen H. Bigio; Irene Litvan; Kailash P. Bhatia; Dennis W. Dickson; Nicholas W. Wood; Mike Hutton

Objective: To analyze the association of polymorphisms in the tau gene with pathologically confirmed corticobasal degeneration (CBD). Background: The authors previously described an extended tau haplotype (H1) that covers the human tau gene and is associated with the development of progressive supranuclear palsy (PSP). The authors now extend this analysis to CBD, a neurodegenerative condition with clinical and neuropathologic similarities to PSP. Like PSP, CBD is associated with accumulation of aggregates containing the 4-repeat isoforms of tau. Because of difficulty in diagnosis of CBD, the authors only analyzed cases with pathologically confirmed CBD. Methods: The authors collected 57 unrelated, neuropathologically confirmed cases of CBD. Tau sequencing in these cases failed to show the presence of pathogenic mutations. Polymorphisms that spanned the tau gene were analyzed in all CBD cases and controls. Results: Analyzing tau polymorphisms in CBD cases showed that the frequency of H1 and H1/H1 was significantly increased when analyzing all cases and when separating by country of origin. H1 frequency in all CBD cases was 0.921, compared with a control frequency of 0.766 (X2 = 9.1, p = 0.00255 [1df], OR 3.56 [8.43 > CI 95% > 1.53]). The H1/H1 frequency was also significantly higher at 0.842 compared with 0.596 in age-matched controls (X2 = 17.42, p = 0.00016, 2df), OR 3.61 [7.05 > CI 95% > 1.85]). Conclusions: The CBD tau association described here suggests that PSP and CBD share a similar cause, although the pathogenic mechanism behind the two diseases leads to a different clinical and pathologic phenotype.


Annals of Neurology | 2008

Characterization of PLA2G6 as a locus for dystonia-parkinsonism.

Coro Paisán-Ruiz; Kailash P. Bhatia; Abi Li; Dena Hernandez; Mary B. Davis; Nicholas W. Wood; John Hardy; Henry Houlden; Andrew Singleton; Susanne A. Schneider

Although many recessive loci causing parkinsonism dystonia have been identified, these do not explain all cases of the disorder.


Journal of Biological Chemistry | 1999

5' splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10.

Andrew Grover; Henry Houlden; Matthew J. Baker; Jennifer Adamson; Jada Lewis; Guy Prihar; Stuart Pickering-Brown; Karen Duff; Mike Hutton

Missense and splice site mutations in the microtubule-associated protein tau gene were recently found associated with fronto-temporal dementia and parkinsonism linked to chromosome 17 (Poorkaj et al. (1998) Ann. Neurol. 43, 815–825; Hutton et al. (1998)Nature 393, 702–705; Spillantini et al. (1998)Proc. Natl. Acad. Sci. U. S. A. 95, 7737–7741). The mutations in the 5′ splice site of exon 10 were shown to increase the ratio of tau mRNAs containing exon 10 and thus the proportion of Tau protein isoforms with 4 microtubule binding repeat domains, although how this increase leads to neurodegeneration is presently unclear. The mechanism by which these mutations increasetau exon 10 splicing was not determined, although the mutations were predicted to disrupt a potential stem-loop structure that was likely involved in the regulation of exon 10 alternative splicing. Here we describe in vitro splicing assays and RNA structural analysis that demonstrate that the mutations do indeed act through disruption of the stem-loop structure and that the stability of this secondary structure feature at least partially determines the ratio of tau exon 10+/− transcripts. In addition, we provide evidence that the stability of the stem-loop structure underlies the alternative splicing of this exon in other species.


Neuroreport | 1995

A mutation in Alzheimer's disease destroying a splice acceptor site in the presenilin-1 gene

Jordi Pérez-Tur; Susanne Froelich; Guy Prihar; Richard Crook; Matt Baker; Karen Duff; Michelle Wragg; Frances Busfield; Corinne Lendon; Robert F. Clark; Penelope Roques; Rebecca A. Fuldner; Janet A. Johnston; Richard F. Cowburn; Charlotte Forsell; Karin Axelman; Henry Houlden; Eric Karran; Gareth W. Roberts; Mark D. Adams; John Hardy; Alison Goate; Lars Lannfelt; Mike Hutton

A series of mutations has been reported in the presenilin-1 (PS-1) gene which cause early onset Alzheimers disease (AD). The mutations reported to date have encoded missense mutations which alter residues conserved between PS-1 and the presenilin-2 (PS-2) gene. We have recently determined the intron/exon structure of the PS-1 gene and this information has been used to identify a mutation in the splice acceptor site for exon 9 in a family with early onset AD. Amplification of cDNA from lymphoblasts of affected individuals revealed that the effect of the mutation was to cause splicing out of exon 9, however it does not change the open reading frame of the mRNA. The importance of this observation is discussed.

Collaboration


Dive into the Henry Houlden's collaboration.

Top Co-Authors

Avatar

Mary M. Reilly

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Nicholas W. Wood

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

John Hardy

University College London

View shared research outputs
Top Co-Authors

Avatar

Janice L. Holton

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James M. Polke

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Tamas Revesz

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

M Laura

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Lees

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Mary G. Sweeney

UCL Institute of Neurology

View shared research outputs
Researchain Logo
Decentralizing Knowledge