Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas W. Wood is active.

Publication


Featured researches published by Nicholas W. Wood.


Neuron | 2004

Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson's Disease

Coro Paisán-Ruiz; Shushant Jain; E. Whitney Evans; William P. Gilks; Javier Simón; Marcel van der Brug; Adolfo López de Munain; Silvia Aparicio; Angel Martı́nez Gil; Naheed L. Khan; Janel O. Johnson; Javier Ruiz Martinez; David Nicholl; Itxaso Marti Carrera; Amets Saénz Peňa; Rohan de Silva; Andrew J. Lees; Jose Felix Marti-Masso; Jordi Pérez-Tur; Nicholas W. Wood; Andrew Singleton

Parkinsons disease (PD; OMIM #168600) is the second most common neurodegenerative disorder in the Western world and presents as a progressive movement disorder. The hallmark pathological features of PD are loss of dopaminergic neurons from the substantia nigra and neuronal intracellular Lewy body inclusions. Parkinsonism is typically sporadic in nature; however, several rare familial forms are linked to genetic loci, and the identification of causal mutations has provided insight into the disease process. PARK8, identified in 2002 by Funayama and colleagues, appears to be a common cause of familial PD. We describe here the cloning of a novel gene that contains missense mutations segregating with PARK8-linked PD in five families from England and Spain. Because of the tremor observed in PD and because a number of the families are of Basque descent, we have named this protein dardarin, derived from the Basque word dardara, meaning tremor.


Neurology | 2008

Second consensus statement on the diagnosis of multiple system atrophy

Sid Gilman; Gregor K. Wenning; Phillip A. Low; David J. Brooks; Christopher J. Mathias; John Q. Trojanowski; Nicholas W. Wood; Carlo Colosimo; Alexandra Durr; Clare J. Fowler; Horacio Kaufmann; Thomas Klockgether; Aj Lees; Werner Poewe; N Quinn; Tamas Revesz; David Robertson; Paola Sandroni; Klaus Seppi; Marie Vidailhet

Background: A consensus conference on multiple system atrophy (MSA) in 1998 established criteria for diagnosis that have been accepted widely. Since then, clinical, laboratory, neuropathologic, and imaging studies have advanced the field, requiring a fresh evaluation of diagnostic criteria. We held a second consensus conference in 2007 and present the results here. Methods: Experts in the clinical, neuropathologic, and imaging aspects of MSA were invited to participate in a 2-day consensus conference. Participants were divided into five groups, consisting of specialists in the parkinsonian, cerebellar, autonomic, neuropathologic, and imaging aspects of the disorder. Each group independently wrote diagnostic criteria for its area of expertise in advance of the meeting. These criteria were discussed and reconciled during the meeting using consensus methodology. Results: The new criteria retain the diagnostic categories of MSA with predominant parkinsonism and MSA with predominant cerebellar ataxia to designate the predominant motor features and also retain the designations of definite, probable, and possible MSA. Definite MSA requires neuropathologic demonstration of CNS α-synuclein–positive glial cytoplasmic inclusions with neurodegenerative changes in striatonigral or olivopontocerebellar structures. Probable MSA requires a sporadic, progressive adult-onset disorder including rigorously defined autonomic failure and poorly levodopa-responsive parkinsonism or cerebellar ataxia. Possible MSA requires a sporadic, progressive adult-onset disease including parkinsonism or cerebellar ataxia and at least one feature suggesting autonomic dysfunction plus one other feature that may be a clinical or a neuroimaging abnormality. Conclusions: These new criteria have simplified the previous criteria, have incorporated current knowledge, and are expected to enhance future assessments of the disease.


Nature Genetics | 2009

Genome-wide association study reveals genetic risk underlying Parkinson's disease

Javier Simón-Sánchez; Claudia Schulte; Jose Bras; Manu Sharma; J. Raphael Gibbs; Daniela Berg; Coro Paisán-Ruiz; Peter Lichtner; Sonja W. Scholz; Dena Hernandez; Rejko Krüger; Monica Federoff; Christine Klein; Alison Goate; Joel S. Perlmutter; Michael Bonin; Michael A. Nalls; Thomas Illig; Christian Gieger; Henry Houlden; Michael Steffens; Michael S. Okun; Brad A. Racette; Mark R. Cookson; Kelly D. Foote; Hubert H. Fernandez; Bryan J. Traynor; Stefan Schreiber; Sampath Arepalli; Ryan Zonozi

We performed a genome-wide association study (GWAS) in 1,713 individuals of European ancestry with Parkinsons disease (PD) and 3,978 controls. After replication in 3,361 cases and 4,573 controls, we observed two strong association signals, one in the gene encoding α-synuclein (SNCA; rs2736990, OR = 1.23, P = 2.24 × 10−16) and another at the MAPT locus (rs393152, OR = 0.77, P = 1.95 × 10−16). We exchanged data with colleagues performing a GWAS in Japanese PD cases. Association to PD at SNCA was replicated in the Japanese GWAS, confirming this as a major risk locus across populations. We replicated the effect of a new locus detected in the Japanese cohort (PARK16, rs823128, OR = 0.66, P = 7.29 × 10−8) and provide supporting evidence that common variation around LRRK2 modulates risk for PD (rs1491923, OR = 1.14, P = 1.55 × 10−5). These data demonstrate an unequivocal role for common genetic variants in the etiology of typical PD and suggest population-specific genetic heterogeneity in this disease.


The New England Journal of Medicine | 2000

Association between early-onset Parkinson's disease and mutations in the parkin gene

Christoph B. Lücking; Alexandra Durr; Bonifati; Jenny Vaughan; G. De Michele; Thomas Gasser; Biswadjiet S. Harhangi; Giuseppe Meco; Patrice Denefle; Nicholas W. Wood; Yves Agid; Alexis Brice; French Parkinsons Dis Genetics Stu

BACKGROUND Mutations in the parkin gene have recently been identified in patients with early-onset Parkinsons disease, but the frequency of the mutations and the associated phenotype have not been assessed in a large series of patients. METHODS We studied 73 families in which at least one of the affected family members was affected at or before the age of 45 years and had parents who were not affected, as well as 100 patients with isolated Parkinsons disease that began at or before the age of 45 years. All subjects were screened for mutations in the parkin gene with use of a semiquantitative polymerase-chain-reaction assay that simultaneously amplified several exons. We sequenced the coding exons in a subgroup of patients. We also compared the clinical features of patients with parkin mutations and those without mutations. RESULTS Among the families with early-onset Parkinsons disease, 36 (49 percent) had parkin mutations. The age at onset ranged from 7 to 58 years. Among the patients with isolated Parkinsons disease, mutations were detected in 10 of 13 patients (77 percent) with an age at onset of 20 years or younger, but in only 2 of 64 patients (3 percent) with an age at onset of more than 30 years. The mean (+/-SD) age at onset in the patients with parkin mutations was younger than that in those without mutations (32+/-11 vs. 42+/-11 years, P<0.001), and they were more likely to have symmetric involvement and dystonia at onset, to have hyperreflexia at onset or later, to have a good response to levodopa therapy, and to have levodopa-induced dyskinesias during treatment. Nineteen different rearrangements of exons (deletions and multiplications) and 16 different point mutations were detected. CONCLUSIONS Mutations in the parkin gene are a major cause of early-onset autosomal recessive familial Parkinsons disease and isolated juvenile-onset Parkinsons disease (at or before the age of 20 years). Accurate diagnosis of these cases cannot be based only on the clinical manifestations of the disease.


Lancet Neurology | 2008

Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study

Daniel G. Healy; Mario Falchi; Sean S. O'Sullivan; Vincenzo Bonifati; Alexandra Durr; Susan Bressman; Alexis Brice; Jan O. Aasly; Cyrus P. Zabetian; Stefano Goldwurm; Joaquim J. Ferreira; Eduardo Tolosa; Denise M. Kay; Christine Klein; David R. Williams; Connie Marras; Anthony E. Lang; Zbigniew K. Wszolek; José Berciano; A. H. V. Schapira; Timothy Lynch; Kailash P. Bhatia; Thomas Gasser; Andrew J. Lees; Nicholas W. Wood

Summary Background Mutations in LRRK2, the gene that encodes leucine-rich repeat kinase 2, are a cause of Parkinsons disease (PD). The International LRRK2 Consortium was established to answer three key clinical questions: can LRRK2-associated PD be distinguished from idiopathic PD; which mutations in LRRK2 are pathogenic; and what is the age-specific cumulative risk of PD for individuals who inherit or are at risk of inheriting a deleterious mutation in LRRK2? Methods Researchers from 21 centres across the world collaborated on this study. The frequency of the common LRRK2 Gly2019Ser mutation was estimated on the basis of data from 24 populations worldwide, and the penetrance of the mutation was defined in 1045 people with mutations in LRRK2 from 133 families. The LRRK2 phenotype was defined on the basis of 59 motor and non-motor symptoms in 356 patients with LRRK2-associated PD and compared with the symptoms of 543 patients with pathologically proven idiopathic PD. Findings Six mutations met the consortiums criteria for being proven pathogenic. The frequency of the common LRRK2 Gly2019Ser mutation was 1% of patients with sporadic PD and 4% of patients with hereditary PD; the frequency was highest in the middle east and higher in southern Europe than in northern Europe. The risk of PD for a person who inherits the LRRK2 Gly2019Ser mutation was 28% at age 59 years, 51% at 69 years, and 74% at 79 years. The motor symptoms (eg, disease severity, rate of progression, occurrence of falls, and dyskinesia) and non-motor symptoms (eg, cognition and olfaction) of LRRK2-associated PD were more benign than those of idiopathic PD. Interpretation Mutations in LRRK2 are a clinically relevant cause of PD that merit testing in patients with hereditary PD and in subgroups of patients with PD. However, this knowledge should be applied with caution in the diagnosis and counselling of patients. Funding UK Medical Research Council; UK Parkinsons Disease Society; UK Brain Research Trust; Internationaal Parkinson Fonds; Volkswagen Foundation; National Institutes of Health: National Institute of Neurological Disorders and Stroke and National Institute of Aging; Udall Parkinsons Disease Centre of Excellence; Pacific Alzheimer Research Foundation Centre; Italian Telethon Foundation; Fondazione Grigioni per il Morbo di Parkinson; Michael J Fox Foundation for Parkinsons Research; Safra Global Genetics Consortium; US Department of Veterans Affairs; French Agence Nationale de la Recherche.


Nature Genetics | 2014

Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease

Michael A. Nalls; Nathan Pankratz; Christina M. Lill; Chuong B. Do; Dena Hernandez; Mohamad Saad; Anita L. DeStefano; Eleanna Kara; Jose Bras; Manu Sharma; Claudia Schulte; Margaux F. Keller; Sampath Arepalli; Christopher Letson; Connor Edsall; Hreinn Stefansson; Xinmin Liu; Hannah Pliner; Joseph H. Lee; Rong Cheng; M. Arfan Ikram; John P. A. Ioannidis; Georgios M. Hadjigeorgiou; Joshua C. Bis; Maria Martinez; Joel S. Perlmutter; Alison Goate; Karen Marder; Brian K. Fiske; Margaret Sutherland

We conducted a meta-analysis of Parkinsons disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant association; these and 6 additional previously reported loci were then tested in an independent set of 5,353 cases and 5,551 controls. Of the 32 tested SNPs, 24 replicated, including 6 newly identified loci. Conditional analyses within loci showed that four loci, including GBA, GAK-DGKQ, SNCA and the HLA region, contain a secondary independent risk variant. In total, we identified and replicated 28 independent risk variants for Parkinsons disease across 24 loci. Although the effect of each individual locus was small, risk profile analysis showed substantial cumulative risk in a comparison of the highest and lowest quintiles of genetic risk (odds ratio (OR) = 3.31, 95% confidence interval (CI) = 2.55–4.30; P = 2 × 10−16). We also show six risk loci associated with proximal gene expression or DNA methylation.


Nature Reviews Neuroscience | 2006

Expanding insights of mitochondrial dysfunction in Parkinson's disease

Patrick M. Abou-Sleiman; Miratul M. K. Muqit; Nicholas W. Wood

The quest to disentangle the aetiopathogenesis of Parkinsons disease has been heavily influenced by the genes associated with the disease. The α-synuclein-centric theory of protein aggregation with the adjunct of parkin-driven proteasome deregulation has, in recent years, been complemented by the discovery and increasing knowledge of the functions of DJ1, PINK1 and OMI/HTRA2, which are all associated with the mitochondria and have been implicated in cellular protection against oxidative damage. We critically review how these genes fit into and enhance our understanding of the role of mitochondrial dysfunction in Parkinsons disease, and consider how oxidative stress might be a potential unifying factor in the aetiopathogenesis of the disease.


Nature Genetics | 2010

A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1

Amy Strange; Francesca Capon; Chris C. A. Spencer; Jo Knight; Michael E. Weale; Michael H. Allen; Anne Barton; Céline Bellenguez; Judith G.M. Bergboer; Jenefer M. Blackwell; Elvira Bramon; Suzannah Bumpstead; Juan P. Casas; Michael J. Cork; Aiden Corvin; Panos Deloukas; Alexander Dilthey; Audrey Duncanson; Sarah Edkins; Xavier Estivill; Oliver FitzGerald; Colin Freeman; Emiliano Giardina; Emma Gray; Angelika Hofer; Ulrike Hüffmeier; Sarah Hunt; Alan D. Irvine; Janusz Jankowski; Brian J. Kirby

To identify new susceptibility loci for psoriasis, we undertook a genome-wide association study of 594,224 SNPs in 2,622 individuals with psoriasis and 5,667 controls. We identified associations at eight previously unreported genomic loci. Seven loci harbored genes with recognized immune functions (IL28RA, REL, IFIH1, ERAP1, TRAF3IP2, NFKBIA and TYK2). These associations were replicated in 9,079 European samples (six loci with a combined P < 5 × 10−8 and two loci with a combined P < 5 × 10−7). We also report compelling evidence for an interaction between the HLA-C and ERAP1 loci (combined P = 6.95 × 10−6). ERAP1 plays an important role in MHC class I peptide processing. ERAP1 variants only influenced psoriasis susceptibility in individuals carrying the HLA-C risk allele. Our findings implicate pathways that integrate epidermal barrier dysfunction with innate and adaptive immune dysregulation in psoriasis pathogenesis.


The Lancet | 2005

A common LRRK2 mutation in idiopathic Parkinson's disease

William P. Gilks; Patrick M. Abou-Sleiman; Sonia Gandhi; Shushant Jain; Andrew Singleton; Andrew J. Lees; Karen Shaw; Kailash P. Bhatia; Vincenzo Bonifati; Niall Quinn; John B. Lynch; Daniel G. Healy; Janice L. Holton; Tamas Revesz; Nicholas W. Wood

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been shown to cause autosomal dominant Parkinsons disease. Few mutations in this gene have been identified. We investigated the frequency of a common heterozygous mutation, 2877510 g-->A, which produces a glycine to serine aminoacid substitution at codon 2019 (Gly2019 ser), in idiopathic Parkinsons disease. We assessed 482 patients with the disorder, of whom 263 had pathologically confirmed disease, by direct sequencing for mutations in exon 41 of LRRK2. The mutation was present in eight (1.6%) patients. We have shown that a common single Mendelian mutation is implicated in sporadic Parkinsons disease. We suggest that testing for this mutation will be important in the management and genetic counselling of patients with Parkinsons disease.


Scopus | 2011

Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility

David Evans; Alexander Dilthey; M. Pirinen; Tetyana Zayats; C. C. A. Spencer; Z. Su; Céline Bellenguez; Colin Freeman; Amy Strange; Gilean McVean; Peter Donnelly; J. J. Pointon; David Harvey; L. H. Appleton; T. Wordsworth; Tugce Karaderi; C Farrar; Paul Bowness; B. P. Wordsworth; Grazyna Kochan; U. Opperman; M Stone; L. Moutsianis; Stephen Leslie; Tony J. Kenna; Gethin P. Thomas; Linda A. Bradbury; Patrick Danoy; Matthew A. Brown; M. Ward

Ankylosing spondylitis is a common form of inflammatory arthritis predominantly affecting the spine and pelvis that occurs in approximately 5 out of 1,000 adults of European descent. Here we report the identification of three variants in the RUNX3, LTBR-TNFRSF1A and IL12B regions convincingly associated with ankylosing spondylitis (P < 5 × 10−8 in the combined discovery and replication datasets) and a further four loci at PTGER4, TBKBP1, ANTXR2 and CARD9 that show strong association across all our datasets (P < 5 × 10−6 overall, with support in each of the three datasets studied). We also show that polymorphisms of ERAP1, which encodes an endoplasmic reticulum aminopeptidase involved in peptide trimming before HLA class I presentation, only affect ankylosing spondylitis risk in HLA-B27–positive individuals. These findings provide strong evidence that HLA-B27 operates in ankylosing spondylitis through a mechanism involving aberrant processing of antigenic peptides.

Collaboration


Dive into the Nicholas W. Wood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry Houlden

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Lees

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

John Hardy

University College London

View shared research outputs
Top Co-Authors

Avatar

Huw R. Morris

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Tamas Revesz

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Mary B. Davis

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janice L. Holton

UCL Institute of Neurology

View shared research outputs
Researchain Logo
Decentralizing Knowledge