Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel D. Stranks is active.

Publication


Featured researches published by Samuel D. Stranks.


Journal of Physical Chemistry Letters | 2014

Anomalous Hysteresis in Perovskite Solar Cells

Henry J. Snaith; Antonio Abate; James M. Ball; Giles E. Eperon; Tomas Leijtens; Nakita K. Noel; Samuel D. Stranks; Jacob Tse-Wei Wang; Konrad Wojciechowski; Wei Zhang

Perovskite solar cells have rapidly risen to the forefront of emerging photovoltaic technologies, exhibiting rapidly rising efficiencies. This is likely to continue to rise, but in the development of these solar cells there are unusual characteristics that have arisen, specifically an anomalous hysteresis in the current-voltage curves. We identify this phenomenon and show some examples of factors that make the hysteresis more or less extreme. We also demonstrate stabilized power output under working conditions and suggest that this is a useful parameter to present, alongside the current-voltage scan derived power conversion efficiency. We hypothesize three possible origins of the effect and discuss its implications on device efficiency and future research directions. Understanding and resolving the hysteresis is essential for further progress and is likely to lead to a further step improvement in performance.


Energy and Environmental Science | 2014

Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells

Giles E. Eperon; Samuel D. Stranks; Christopher Menelaou; Michael B. Johnston; Laura M. Herz; Henry J. Snaith

Perovskite-based solar cells have attracted significant recent interest, with power conversion efficiencies in excess of 15% already superceding a number of established thin-film solar cell technologies. Most work has focused on a methylammonium lead trihalide perovskites, with a bandgaps of ∼1.55 eV and greater. Here, we explore the effect of replacing the methylammonium cation in this perovskite, and show that with the slightly larger formamidinium cation, we can synthesise formamidinium lead trihalide perovskites with a bandgap tunable between 1.48 and 2.23 eV. We take the 1.48 eV-bandgap perovskite as most suited for single junction solar cells, and demonstrate long-range electron and hole diffusion lengths in this material, making it suitable for planar heterojunction solar cells. We fabricate such devices, and due to the reduced bandgap we achieve high short-circuit currents of >23 mA cm−2, resulting in power conversion efficiencies of up to 14.2%, the highest efficiency yet for solution processed planar heterojunction perovskite solar cells. Formamidinium lead triiodide is hence promising as a new candidate for this class of solar cell.


Nature Nanotechnology | 2015

Metal-halide perovskites for photovoltaic and light-emitting devices

Samuel D. Stranks; Henry J. Snaith

Metal-halide perovskites are crystalline materials originally developed out of scientific curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to over 20% in just four years of academic research. Here, we review the rapid progress in perovskite solar cells, as well as their promising use in light-emitting devices. In particular, we describe the broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and we highlight the properties that have delivered light-emitting diodes and lasers. We discuss key thermal and operational stability challenges facing perovskites, and give an outlook of future research avenues that might bring perovskite technology to commercialization.


Journal of Physical Chemistry Letters | 2014

High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors

Felix Deschler; Michael Price; Sandeep Pathak; Lina Klintberg; David-Dominik Jarausch; Ruben Higler; Sven Hüttner; Tomas Leijtens; Samuel D. Stranks; Henry J. Snaith; Mete Atatüre; R. T. Phillips; Richard H. Friend

The study of the photophysical properties of organic-metallic lead halide perovskites, which demonstrate excellent photovoltaic performance in devices with electron- and hole-accepting layers, helps to understand their charge photogeneration and recombination mechanism and unravels their potential for other optoelectronic applications. We report surprisingly high photoluminescence (PL) quantum efficiencies, up to 70%, in these solution-processed crystalline films. We find that photoexcitation in the pristine CH3NH3PbI3-xClx perovskite results in free charge carrier formation within 1 ps and that these free charge carriers undergo bimolecular recombination on time scales of 10s to 100s of ns. To exemplify the high luminescence yield of the CH3NH3PbI3-xClx perovskite, we construct and demonstrate the operation of an optically pumped vertical cavity laser comprising a layer of perovskite between a dielectric mirror and evaporated gold top mirrors. These long carrier lifetimes together with exceptionally high luminescence yield are unprecedented in such simply prepared inorganic semiconductors, and we note that these properties are ideally suited for photovoltaic diode operation.


Energy and Environmental Science | 2014

Lead-free organic–inorganic tin halide perovskites for photovoltaic applications

Nakita K. Noel; Samuel D. Stranks; Antonio Abate; Christian Wehrenfennig; Simone Guarnera; Amir-Abbas Haghighirad; Aditya Sadhanala; Giles E. Eperon; Sandeep Pathak; Michael B. Johnston; Annamaria Petrozza; Laura M. Herz; Henry J. Snaith

Already exhibiting solar to electrical power conversion efficiencies of over 17%, organic–inorganic lead halide perovskite solar cells are one of the most promising emerging contenders in the drive to provide a cheap and clean source of energy. One concern however, is the potential toxicology issue of lead, a key component in the archetypical material. The most likely substitute is tin, which like lead, is also a group 14 metal. While organic–inorganic tin halide perovskites have shown good semiconducting behaviour, the instability of tin in its 2+ oxidation state has thus far proved to be an overwhelming challenge. Here, we report the first completely lead-free, CH3NH3SnI3 perovskite solar cell processed on a mesoporous TiO2 scaffold, reaching efficiencies of over 6% under 1 sun illumination. Remarkably, we achieve open circuit voltages over 0.88 V from a material which has a 1.23 eV band gap.


Nature Communications | 2014

Excitons versus free charges in organo-lead tri-halide perovskites

Valerio D’Innocenzo; Giulia Grancini; Marcelo J. P. Alcocer; Ajay Ram Srimath Kandada; Samuel D. Stranks; Michael M. Lee; Guglielmo Lanzani; Henry J. Snaith; Annamaria Petrozza

Excitonic solar cells, within which bound electron-hole pairs have a central role in energy harvesting, have represented a hot field of research over the last two decades due to the compelling prospect of low-cost solar energy. However, in such cells, exciton dissociation and charge collection occur with significant losses in energy, essentially due to poor charge screening. Organic-inorganic perovskites show promise for overcoming such limitations. Here, we use optical spectroscopy to estimate the exciton binding energy in the mixed-halide crystal to be in the range of 50 meV. We show that such a value is consistent with almost full ionization of the exciton population under photovoltaic cell operating conditions. However, increasing the total photoexcitation density, excitonic species become dominant, widening the perspective of this material for a host of optoelectronic applications.


Science | 2015

Impact of microstructure on local carrier lifetime in perovskite solar cells

Dane de Quilettes; Sarah M. Vorpahl; Samuel D. Stranks; Hirokazu Nagaoka; Giles E. Eperon; Mark E. Ziffer; Henry J. Snaith; David S. Ginger

Going toward the grains Great strides have been made in improving the efficiency of organic-inorganic perovskite solar cells. Further improvements are likely to depend on understanding the role of film morphology on charge-carrier dynamics. de Quilettes et al. correlated confocal fluorescence microscopy images with those from scanning electron microscopy to spatially resolve the photoluminescence and carrier decay dynamics from films of organic-inorganic perovskites. Carrier lifetimes varied widely even between grains, and chemical treatments could improve lifetimes Science, this issue p. 683 Carrier dynamics in organic-inorganic perovskites are probed with confocal fluorescence and scanning electron microscopies. The remarkable performance of hybrid perovskite photovoltaics is attributed to their long carrier lifetimes and high photoluminescence (PL) efficiencies. High-quality films are associated with slower PL decays, and it has been claimed that grain boundaries have a negligible impact on performance. We used confocal fluorescence microscopy correlated with scanning electron microscopy to spatially resolve the PL decay dynamics from films of nonstoichiometric organic-inorganic perovskites, CH3NH3PbI3(Cl). The PL intensities and lifetimes varied between different grains in the same film, even for films that exhibited long bulk lifetimes. The grain boundaries were dimmer and exhibited faster nonradiative decay. Energy-dispersive x-ray spectroscopy showed a positive correlation between chlorine concentration and regions of brighter PL, whereas PL imaging revealed that chemical treatment with pyridine could activate previously dark grains.


Nano Letters | 2014

Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells.

Severin N. Habisreutinger; Tomas Leijtens; Giles E. Eperon; Samuel D. Stranks; R. J. Nicholas; Henry J. Snaith

Organic-inorganic perovskite solar cells have recently emerged at the forefront of photovoltaics research. Power conversion efficiencies have experienced an unprecedented increase to reported values exceeding 19% within just four years. With the focus mainly on efficiency, the aspect of stability has so far not been thoroughly addressed. In this paper, we identify thermal stability as a fundamental weak point of perovskite solar cells, and demonstrate an elegant approach to mitigating thermal degradation by replacing the organic hole transport material with polymer-functionalized single-walled carbon nanotubes (SWNTs) embedded in an insulating polymer matrix. With this composite structure, we achieve JV scanned power-conversion efficiencies of up to 15.3% with an average efficiency of 10 ± 2%. Moreover, we observe strong retardation in thermal degradation as compared to cells employing state-of-the-art organic hole-transporting materials. In addition, the resistance to water ingress is remarkably enhanced. These are critical developments for achieving long-term stability of high-efficiency perovskite solar cells.


Nature Physics | 2015

Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites

Atsuhiko Miyata; Anatolie A. Mitioglu; P. Plochocka; Oliver Portugall; Jacob Tse-Wei Wang; Samuel D. Stranks; Henry J. Snaith; R. J. Nicholas

Direct measurement of the exciton binding energy shows that the impressive performance of perovskite solar cells arises from the spontaneous generation of free electrons and holes after light absorption.


ACS Nano | 2014

Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic–Inorganic Lead Halide Perovskites

Nakita K. Noel; Antonio Abate; Samuel D. Stranks; Elizabeth S. Parrott; Victor M. Burlakov; Alain Goriely; Henry J. Snaith

Organic-inorganic metal halide perovskites have recently emerged as a top contender to be used as an absorber material in highly efficient, low-cost photovoltaic devices. Solution-processed semiconductors tend to have a high density of defect states and exhibit a large degree of electronic disorder. Perovskites appear to go against this trend, and despite relatively little knowledge of the impact of electronic defects, certified solar-to-electrical power conversion efficiencies of up to 17.9% have been achieved. Here, through treatment of the crystal surfaces with the Lewis bases thiophene and pyridine, we demonstrate significantly reduced nonradiative electron-hole recombination within the CH(3)NH(3)PbI(3-x)Cl(x) perovskite, achieving photoluminescence lifetimes which are enhanced by nearly an order of magnitude, up to 2 μs. We propose that this is due to the electronic passivation of under-coordinated Pb atoms within the crystal. Through this method of Lewis base passivation, we achieve power conversion efficiencies for solution-processed planar heterojunction solar cells enhanced from 13% for the untreated solar cells to 15.3% and 16.5% for the thiophene and pyridine-treated solar cells, respectively.

Collaboration


Dive into the Samuel D. Stranks's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimir Bulovic

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom J. Savenije

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge