Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heping Yu is active.

Publication


Featured researches published by Heping Yu.


The Journal of Neuroscience | 2006

The Chloride Intracellular Channel Protein CLIC5 Is Expressed at High Levels in Hair Cell Stereocilia and Is Essential for Normal Inner Ear Function

Leona H. Gagnon; Chantal M. Longo-Guess; Mark Berryman; Jung Bum Shin; Katherine W. Saylor; Heping Yu; Peter G. Gillespie; Kenneth R. Johnson

Although CLIC5 is a member of the chloride intracellular channel protein family, its association with actin-based cytoskeletal structures suggests that it may play an important role in their assembly or maintenance. Mice homozygous for a new spontaneous recessive mutation of the Clic5 gene, named jitterbug (jbg), exhibit impaired hearing and vestibular dysfunction. The jbg mutation is a 97 bp intragenic deletion that causes skipping of exon 5, which creates a translational frame shift and premature stop codon. Western blot and immunohistochemistry results confirmed the predicted absence of CLIC5 protein in tissues of jbg/jbg mutant mice. Histological analysis of mutant inner ears revealed dysmorphic stereocilia and progressive hair cell degeneration. In wild-type mice, CLIC5-specific immunofluorescence was detected in stereocilia of both cochlear and vestibular hair cells and also along the apical surface of Kolliker’s organ during cochlear development. Refined immunolocalization in rat and chicken vestibular hair cells showed that CLIC5 is limited to the basal region of the hair bundle, similar to the known location of radixin. Radixin immunostaining appeared reduced in hair bundles of jbg mutant mice. By mass spectrometry and immunoblotting, CLIC5 was shown to be expressed at high levels in stereocilia of the chicken utricle, in an approximate 1:1 molar ratio with radixin. These results suggest that CLIC5 associates with radixin in hair cell stereocilia and may help form or stabilize connections between the plasma membrane and the filamentous actin core.


Hearing Research | 2004

Gravity receptor function in mice with graded otoconial deficiencies

Sherri M. Jones; Lawrence C. Erway; Kenneth R. Johnson; Heping Yu; Timothy A. Jones

The purpose of the present study was to examine gravity receptor function in mutant mouse strains with variable deficits in otoconia: lethal milk (lm), pallid (pa), tilted (tlt), mocha (mh), and muted (mu). Control animals were either age-matched heterozygotes or C57BL/6J (abbr. B6) mice. Gravity receptor function was measured using linear vestibular evoked potentials (VsEPs). Cage and swimming behaviors were also documented. Temporal bones were cleared to assess the overall otoconial deficit and to correlate structure and function for lm mice. Results confirmed the absence of VsEPs for mice that lacked otoconia completely. VsEP thresholds and amplitudes varied in mouse strains with variable loss of otoconia. Some heterozygotes also showed elevated VsEP thresholds in comparison to B6 mice. In lm mice, which have absent otoconia in the utricle and a variable loss of otoconia in the saccule, VsEPs were present and average P1/N1 amplitudes were highly correlated with the average loss of saccular otoconia (R = 0.77,p < 0.001). Cage and swimming behavior were not adversely affected in those animals with recordable VsEPs. Most, but not all, mice with absent VsEPs were unable to swim. Some animals were able to swim despite having no measurable gravity receptor response. The latter finding underscores the remarkable adaptive potential exhibited by neurobehavioral systems following profound sensory loss. It also shows that behavior alone may be an unreliable indicator of the extent of gravity receptor deficits.


Neurobiology of Aging | 2009

A locus on distal chromosome 10 (ahl4) affecting age-related hearing loss in A/J mice.

Qing Yin Zheng; Dalian Ding; Heping Yu; Richard Salvi; Kenneth R. Johnson

The ahl locus, shown to be a strain-specific Cdh23 dimorphism, contributes to age-related hearing loss in many inbred mouse strains. A/J mice begin to lose hearing by 4 weeks of age, much earlier than C57BL/6J (B6) mice, although both strains have the same Cdh23(ahl) variant. Here, we use recombinant inbred strains, chromosome substitution strains, and a linkage backcross to map a locus on distal Chromosome 10, designated ahl4, that contributes to the early-onset hearing loss of A/J mice. Cochleae of 9-week-old A/J mice exhibit inner and outer hair cell loss from the basal turn through the apical turn, with outer hair cell loss at the base being severest. To quantify the progression of hair cell loss, cytocochleograms were evaluated from 0 to 20 weeks of age. A/J mice showed evidence of hair cell loss in the base of the cochlea as early as 14 days of age and the magnitude and extent of loss increased rapidly during the following 2-5 months. Hair cell loss occurred earlier and was much more severe and widespread in A/J mice than in B6 mice during the first 5 months of age. Spiral ganglion neurons, cells of the stria vascularis, and vestibular hair cell densities, however, appeared normal in 20-week-old A/J mice.


Genomics | 2008

A locus on distal Chromosome 11 (ahl8) and its interaction with Cdh23ahl underlie the early onset, age-related hearing loss of DBA/2J mice

Kenneth R. Johnson; Chantal M. Longo-Guess; Leona H. Gagnon; Heping Yu; Qing Yin Zheng

The DBA/2J inbred strain of mice is used extensively in hearing research, yet little is known about the genetic basis for its early onset, progressive hearing loss. To map underlying genetic factors we analyzed recombinant inbred strains and linkage backcrosses. Analysis of 213 mice from 31 BXD recombinant inbred strains detected linkage of auditory brain-stem response thresholds with a locus on distal chromosome 11, which we designate ahl8. Analysis of 225 N2 mice from a backcross of (C57BL/6JxDBA/2J) F1 hybrids to DBA/2J mice confirmed this linkage (LOD>50) and refined the ahl8 candidate gene interval. Analysis of 214 mice from a backcross of (B6.CAST-Cdh23 Ahl+ xDBA/2J) F1 hybrids to DBA/2J mice demonstrated a genetic interaction of Cdh23 with ahl8. We conclude that ahl8 is a major contributor to the hearing loss of DBA/2J mice and that its effects are dependent on the predisposing Cdh23 ahl genotype of this strain.


Brain Research | 2006

A comparison of vestibular and auditory phenotypes in inbred mouse strains

Sherri M. Jones; Timothy A. Jones; Kenneth R. Johnson; Heping Yu; Lawrence C. Erway; Qing Y. Zheng

The purposes of this research were to quantify gravity receptor function in inbred mouse strains and compare vestibular and auditory function for strain- and age-matched animals. Vestibular evoked potentials (VsEPs) were collected for 19 inbred strains at ages from 35 to 389 days old. On average, C57BL/6J (35 to 190 days), BALB/cByJ, C3H/HeSnJ, CBA/J, and young LP/J mice had VsEP thresholds comparable to normal. Elevated VsEP thresholds were found for elderly C57BL/6J, NOD.NONH2(kb), BUB/BnJ, A/J, DBA/2J, NOD/LtJ, A/WySnJ, MRL/MpJ, A/HeJ, CAST/Ei, SJL/J, elderly LP/J, and CE/J. These results suggest that otolithic function varies among inbred strains and several strains displayed gravity receptor deficits by 90 days old. Auditory brainstem response (ABR) thresholds were compared to VsEP thresholds for 14 age-matched strains. C57BL/6J mice (up to 190 days) showed normal VsEPs with normal to mildly elevated ABR thresholds. Four strains (BUB/BnJ, NOD/LtJ, A/J, elderly LP/J) had significant hearing loss and elevated VsEP thresholds. Four strains (DBA/2J, A/WySnJ, NOD.NONH2(kb), A/HeJ) had elevated VsEP thresholds (including absent VsEPs) with mild to moderate elevations in ABR thresholds. Three strains (MRL/MpJ, Ce/J, SJL/J) had significant vestibular loss with no concomitant hearing loss. These results suggest that functional change in one sensory system does not obligate change in the other. We hypothesize that genes responsible for early onset hearing loss may affect otolithic function, yet the time course of functional change may vary. In addition, some genetic mutations may produce primarily gravity receptor deficits. Potential genes responsible for selective gravity receptor impairment demonstrated herein remain to be identified.


Pharmacogenomics Journal | 2012

A new mouse mutant of the Cdh23 gene with early-onset hearing loss facilitates evaluation of otoprotection drugs.

Fengchan Han; Heping Yu; Cong Tian; Hui E Chen; Cindy Benedict-Alderfer; Yuxi Zheng; Qiuju Wang; Xu Han; Qing Y. Zheng

We report a novel mutation (erlong, erl) of the cadherin 23 (Cdh23) gene in a mouse model for DFNB12 characterized by progressive hearing loss beginning from postnatal day 27 (P27). Genetic and sequencing analysis revealed a 208 T >C transition causing an amino-acid substitution (70S–P). Caspase expression was upregulated in mutant inner ears. Hearing was preserved (up to 35-dB improvement) in pan-caspase inhibitor Z-VAD-FMK-treated mutants compared with untreated mutants (P<0.05). Outer hair cell (OHC) loss in the cochleae of Z-VAD-FMK-treated mutants was significantly reduced compared with those of untreated mice. Thus, the erl mutation can lead to hearing loss through apoptosis. This is the first genetic mouse model of hearing loss shown to respond to otoprotective drug therapy. The short interval from initial hearing loss to deafness (P27–P90) makes this model ideal for screening and validating otoprotective drugs.


Hearing Research | 2010

Separate and combined effects of Sod1 and Cdh23 mutations on age-related hearing loss and cochlear pathology in C57BL/6J mice

Kenneth R. Johnson; Heping Yu; Dalian Ding; Haiyan Jiang; Leona H. Gagnon; Richard Salvi

Both the ahl allele of Cdh23 and the null mutation of Sod1 have been shown to contribute to age-related hearing loss (AHL) in mice, but mixed strain backgrounds have confounded analyses of their individual and combined effects. To test for the effects of Sod1 deficiency independently from those of Cdh23(ahl), we produced mice with four digenic genotypes: Sod1(+/+)Cdh23(ahl)(/ahl), Sod1(+/+)Cdh23(+/+), Sod1(-/-)Cdh23(ahl)(/ahl), and Sod1(-/-)Cdh23(+/+), all on a uniform C57BL(/)6J strain background. We assessed hearing loss by ABR threshold measurements and evaluated cochlear pathologies in age-matched mice of each digenic combination. ABR analysis showed that Sod1(+/+)Cdh23(+/+) mice retain normal hearing up to 15 months of age and that hearing loss of Sod1(+/+)Cdh23(ahl)(/ahl) mice is more age and frequency dependent than that of Sod1(-/-)Cdh23(+/+) mice. ABR results also showed that mice with both gene mutations (Sod1(-/-)Cdh23(ahl)(/ahl)) exhibit the earliest onset and most severe hearing loss, greater than predicted for strictly additive effects. Histological analysis of cochleas showed that hair cell lesions are most severe in Sod1(-)(/-)Cdh23(ahl)(/ahl) mice followed closely by Sod1(+)(/+)Cdh23(ahl)(/ahl) mice and much smaller in Sod1(-)(/-)Cdh23(+)(/+) and Sod1(+)(/+)Cdh23(+)(/+) mice. Despite extensive damage to cochlear hair cells, vestibular hair cells appeared remarkably normal in all strains. Although both Sod1(-/-) and Cdh23(ahl)(/ahl) genotypes had strong effects on hearing loss, the Cdh23(ahl/ahl) genotype was primarily responsible for the increase in hair cell loss, suggesting that the two mutations have different underlying mechanisms of pathology.


PLOS ONE | 2011

Sh3pxd2b mice are a model for craniofacial dysmorphology and otitis media.

Bin Yang; Cong Tian; Zhi guang Zhang; Feng chan Han; Rami Azem; Heping Yu; Ye Zheng; Ge Jin; James E. Arnold; Qing Y. Zheng

Craniofacial defects that occur through gene mutation during development increase vulnerability to eustachian tube dysfunction. These defects can lead to an increased incidence of otitis media. We examined the effects of a mutation in the Sh3pxd2b gene (Sh3pxd2bnee) on the progression of otitis media and hearing impairment at various developmental stages. We found that all mice that had the Sh3pxd2bnee mutation went on to develop craniofacial dysmorphologies and subsequently otitis media, by as early as 11 days of age. We found noteworthy changes in cilia and goblet cells of the middle ear mucosa in Sh3pxd2bnee mutant mice using scanning electronic microscopy. By measuring craniofacial dimensions, we determined for the first time in an animal model that this mouse has altered eustachian tube morphology consistent with a more horizontal position of the eustachian tube. All mutants were found to have hearing impairment. Expression of TNF-α and TLR2, which correlates with inflammation in otitis media, was up-regulated in the ears of mutant mice when examined by immunohistochemistry and semi-quantitative RT-PCR. The mouse model with a mutation in the Sh3pxd2b gene (Sh3pxd2bnee) mirrors craniofacial dysmorphology and otitis media in humans.


Brain Research | 2010

Ush1c gene expression levels in the ear and eye suggest different roles for Ush1c in neurosensory organs in a new Ush1c knockout mouse

Cong Tian; Xue Zhong Liu; Fengchan Han; Heping Yu; Chantal Longo-Guess; Bin Yang; Changjun Lu; Denise Yan; Qing Y. Zheng

Usher syndrome (USH) is the most common form of deaf-blindness in humans. Molecular characterization revealed that the USH gene products form a macromolecular protein network in hair cells of the inner ear and in photoreceptor cells of the retina via binding to PDZ domains in the scaffold protein harmonin encoded by the Ush1c gene in mice and humans. Although several mouse mutants for the Ush1c gene have been described, we generated a targeted null mutation Ush1c mouse model in which the first four exons of the Ush1c gene were replaced with a reporter gene. Here, we assessed the expression pattern of the reporter gene under control of Ush1c regulatory elements and characterized the phenotype of mice defective for Ush1c. These Ush1 knockout mice are deaf but do not recapitulate vision defects before 10 months of age. Our data show LacZ expression in multiple layers of the retina but in neither outer nor inner segments of the photoreceptor layers in mice bearing the knockout construct at 1-5 months of age. The fact that Ush1c expression is much higher in the ear than in the eye suggests a different role for Ush1c in ear function than in the eye and may explain why Ush1c mutant mice do not recapitulate vision defects.


Human Molecular Genetics | 2012

Digenic inheritance of deafness caused by 8J allele of myosin-VIIA and mutations in other Usher I genes

Qing Yin Zheng; John D. Scarborough; Ye Zheng; Heping Yu; Dongseok Choi; Peter G. Gillespie

Inherited hearing loss in mice has contributed substantially to our understanding of inner-ear function. We identified a new allele at the Myo7a locus, Myo7a(sh1-8J); genomic characterization indicated that Myo7a(sh1-8J) arose from complex deletion encompassing exons 38-40 and 42-46. Homozygous mutant mice had no detectable auditory brainstem response, displayed highly disorganized hair-cell stereocilia and had no detectable MYO7A protein. We generated mice that were digenic heterozygotes for Myo7a(sh1-8J) and one of each Cdh23(v-2J), Ush1g(js) or Pcdh15(av-3J) alleles, or an Ush1c null allele. Significant levels of age-related hearing loss were detected in +/Myo7a(sh1-8J) +/Ush1g(js), +/Myo7a(sh1-8J) +/Cdh23(v-2J) and +/Myo7a(sh1-8J) +/Pcdh15(av-3J) double heterozygous mice compared with age-matched single heterozygous animals, suggesting epistasis between Myo7a and each of the three loci. +/Pcdh15(av-3J) +/Ush1g(js) double heterozygous mice also showed elevated hearing loss, suggesting Pcdh15-Ush1g epistasis. While we readily detected MYO7A, USH1C, CDH23 and PCDH15 using mass spectrometry of purified chick utricle hair bundles, we did not detect USH1G. Consistent with that observation, Ush1g microarray signals were much lower in chick cochlea than those of Myo7a, Ush1c, Cdh23 and Pcdh15 and were not detected in the chick utricle. These experiments confirm the importance of MYO7A for the development and maintenance of bundle function and support the suggestion that MYO7A, USH1G (Sans) and CDH23 form the upper tip-link complex in adult mice, likely in combination with USH1C (harmonin). MYO7A, USH1G and PCDH15 may form another complex in stereocilia. USH1G may be a limiting factor in both complexes.

Collaboration


Dive into the Heping Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Yin Zheng

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Cong Tian

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Fengchan Han

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sherri M. Jones

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Timothy A. Jones

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Qing Y. Zheng

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Cindy Benedict-Alderfer

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge