Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Herb S. Aldwinckle is active.

Publication


Featured researches published by Herb S. Aldwinckle.


BMC Plant Biology | 2010

Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus × domestica) with Erwinia amylovora

Angela M. Baldo; Jay Norelli; Robert E. Farrell; Carole L. Bassett; Herb S. Aldwinckle; Mickael Malnoy

BackgroundThe necrogenic enterobacterium, Erwinia amylovora is the causal agent of the fire blight (FB) disease in many Rosaceaespecies, including apple and pear. During the infection process, the bacteria induce an oxidative stress response with kinetics similar to those induced in an incompatible bacteria-plant interaction. No resistance mechanism to E. amylovora in host plants has yet been characterized, recent work has identified some molecular events which occur in resistant and/or susceptible host interaction with E. amylovora: In order to understand the mechanisms that characterize responses to FB, differentially expressed genes were identified by cDNA-AFLP analysis in resistant and susceptible apple genotypes after inoculation with E. amylovora.ResultscDNA were isolated from M.26 (susceptible) and G.41 (resistant) apple tissues collected 2 h and 48 h after challenge with a virulent E. amylovora strain or mock (buffer) inoculated. To identify differentially expressed transcripts, electrophoretic banding patterns were obtained from cDNAs. In the AFLP experiments, M.26 and G.41 showed different patterns of expression, including genes specifically induced, not induced, or repressed by E. amylovora. In total, 190 ESTs differentially expressed between M.26 and G.41 were identified using 42 pairs of AFLP primers. cDNA-AFLP analysis of global EST expression in a resistant and a susceptible apple genotype identified different major classes of genes. EST sequencing data showed that genes linked to resistance, encoding proteins involved in recognition, signaling, defense and apoptosis, were modulated by E. amylovora in its host plant. The expression time course of some of these ESTs selected via a bioinformatic analysis has been characterized.ConclusionThese data are being used to develop hypotheses of resistance or susceptibility mechanisms in Malus to E. amylovora and provide an initial categorization of genes possibly involved in recognition events, early signaling responses the subsequent development of resistance or susceptibility. These data also provided potential candidates for improving apple resistance to fire blight either by marker-assisted selection or genetic engineering.


Plant Physiology | 2008

Multiple Models for Rosaceae Genomics

Vladimir Shulaev; Schuyler S. Korban; Bryon Sosinski; A. G. Abbott; Herb S. Aldwinckle; Kevin M. Folta; Amy F. Iezzoni; Dorrie Main; Pere Arús; Abhaya M. Dandekar; Kim S. Lewers; Susan K. Brown; Thomas M. Davis; Susan E. Gardiner; Daniel Potter; Richard E. Veilleux

The plant family Rosaceae consists of over 100 genera and 3,000 species that include many important fruit, nut, ornamental, and wood crops. Members of this family provide high-value nutritional foods and contribute desirable aesthetic and industrial products. Most rosaceous crops have been enhanced by human intervention through sexual hybridization, asexual propagation, and genetic improvement since ancient times, 4,000 to 5,000 B.C. Modern breeding programs have contributed to the selection and release of numerous cultivars having significant economic impact on the U.S. and world markets. In recent years, the Rosaceae community, both in the United States and internationally, has benefited from newfound organization and collaboration that have hastened progress in developing genetic and genomic resources for representative crops such as apple (Malus spp.), peach (Prunus spp.), and strawberry (Fragaria spp.). These resources, including expressed sequence tags, bacterial artificial chromosome libraries, physical and genetic maps, and molecular markers, combined with genetic transformation protocols and bioinformatics tools, have rendered various rosaceous crops highly amenable to comparative and functional genomics studies. This report serves as a synopsis of the resources and initiatives of the Rosaceae community, recent developments in Rosaceae genomics, and plans to apply newly accumulated knowledge and resources toward breeding and crop improvement.


Phytopathology | 2000

Expression of Endochitinase from Trichoderma harzianum in Transgenic Apple Increases Resistance to Apple Scab and Reduces Vigor.

Jyothi Prakash Bolar; John L. Norelli; Kwai-Weng Wong; Christopher K. Hayes; Gary E. Harman; Herb S. Aldwinckle

ABSTRACT The goal of this research was to improve scab resistance of apple by transformation with genes encoding chitinolytic enzymes from the bio-control organism Trichoderma harzianum. The endochitinase gene, as cDNA and genomic clones, was transferred into apple cv. Marshall McIntosh by Agrobacterium-transformation. A total of 15 lines were identified as transgenic by NPTII enzyme-linked immunosorbent assay and polymerase chain reaction and confirmed by Southern analysis. Substantial differences in endochitinase activity were detected among different lines by enzymatic assay and western analysis. Eight lines propagated as grafted and own-rooted plants were inoculated with Venturia inaequalis. Six of these transgenic lines expressing endochitinase were more resistant than nontransformed cv. Marshall McIntosh. Disease severity compared with cv. Marshall McIntosh was reduced by 0 to 99.7% (number of lesions), 0 to 90% (percentage of leaf area infected), and 1 to 56% (conidia recovered) in the transgenic lines tested. Endochitinase also had negative effects on the growth of both inoculated and uninoculated plants. There was a significant negative correlation between the level of endochitinase production and both the amount of disease and plant growth.


Plant Disease | 2003

Fire Blight Management in the Twenty-first Century: Using New Technologies that Enhance Host Resistance in Apple

John L. Norelli; Alan L. Jones; Herb S. Aldwinckle

Fire blight has been known as a destructive disease of apple and pear for over 200 years (3). The disease is caused by the bacterium Erwinia amylovora, which is capable of infecting blossoms, fruits, vegetative shoots, woody tissues, and rootstock crowns (Fig. 1). There are several distinct phases of the disease including blossom blight, shoot blight, and rootstock blight. The diversity of host tissues susceptible to infection, combined with the limited number of management tools available to control the disease, has made it difficult to stop or slow the progress of fire blight epidemics. Effective management of fire blight requires an integrated approach of several practices that are aimed at (i) reducing the amount of inoculum that is available to initiate new infections, (ii) imposing barriers to successful establishment of the pathogen on the host, and (iii) reducing host susceptibility to infection (1,55). Most fire blight management strategies developed during the twentieth century focused on the reduction of inoculum in the orchard and the use of antimicrobial treatments to prevent infection. Although increasing host resistance has been recognized as an important component of fire blight management, its application has been limited by a lack of resistant cultivars suited to commercial needs and by a lack of management practices that could effectively increase resistance. Recent advances have made it feasible to change this paradigm in the twenty-first century. First, apple rootstock breeding programs have developed size-controlling (often dwarfing) rootstocks that are resistant to fire blight and are currently becoming available for commercial use (43). Second, genetic engineering of commercial apple cultivars for increased fire blight resistance has been demonstrated, and transgenic apple plants are now undergoing field trials (2). Third, chemical treatments that enhance host resistance have been demonstrated to be useful in the control of fire blight (9,33,61). Although these technologies are at the early stages of development and are either not available or not proven in the marketplace, incorporating the use of host resistance into fire blight management strategies has become a realistic goal in the twenty-first century. This article describes recent progress in the development of new fire blight control technologies that enhance host resistance by chemical or genetic means.


Molecular Plant-microbe Interactions | 2007

Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus × domestica

Mickael Malnoy; Q. Jin; E. E. Borejsza-Wysocka; S. Y. He; Herb S. Aldwinckle

The NPR1 gene plays a pivotal role in systemic acquired resistance in plants. Its overexpression in Arabidopsis and rice results in increased disease resistance and elevated expression of pathogenesis-related (PR) genes. An NPR1 homolog, MpNPR1-1, was cloned from apple (Malus x domestica) and overexpressed in two important apple cultivars, Galaxy and M26. Apple leaf pieces were transformed with the MpNPR1 cDNA under the control of the inducible Pin2 or constitutive Cauliflower mosaic virus (CaMV)35S promoter using Agrobacterium tumefaciens. Overexpression of MpNPR1 mRNA was shown by reverse transcriptase-polymerase chain reaction. Activation of some PR genes (PR2, PR5, and PR8) was observed. Resistance to fire blight was evaluated in a growth chamber by inoculation of the shoot tips of our own rooted 30-cm-tall plants with virulent strain Ea273 of Erwinia amylovora. Transformed Galaxy lines overexpressing MpNPR1 had 32 to 40% of shoot length infected, compared with 80% in control Galaxy plants. Transformed M26 lines overexpressing MpNPR1 under the control of the CaMV35S promoter also showed a significant reduction of disease compared with control M26 plants. Some MpNPR-overexpressing Galaxy lines also exhibited increased resistance to two important fungal pathogens of apple, Venturia inaequalis and Gymnosporangium juniperi-virginianae. Selected transformed lines have been propagated for field trials for disease resistance and fruit quality.


Transgenic Research | 2001

Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants

Jyothi Prakash Bolar; John L. Norelli; Gary E. Harman; Susan K. Brown; Herb S. Aldwinckle

Genes from the biocontrol fungus Trichoderma atroviride encoding the antifungal proteins endochitinase or exochitinase (N-acetyl-β-D-hexosaminidase) were inserted into ‘Marshall McIntosh’ apple singly and in combination. The genes were driven by a modified CaMV35S promoter. The resulting plants were screened for resistance to Venturia inaequalis, the causal agent of apple scab, and for effects of enzyme expression on growth. Disease resistance was correlated with the level of expression of either enzyme when expressed alone but exochitinase was less effective than endochitinase. The level of expression of endochitinase was negatively correlated with plant growth while exochitinase had no consistent effect on this character. Plants expressing both enzymes simultaneously were more resistant than plants expressing either single enzyme at the same level; analyses indicated that the two enzymes acted synergistically to reduce disease. Selected lines, especially one expressing low levels of endochitinase activity and moderate levels of exochitinase activity, were highly resistant in growth chamber trials and had negligible reduction in vigor relative to control plants. We believe that this is the first report of resistance in plants induced by expression of an N-acetylhexosaminidase and is the first report of in planta synergy between an exochitinase and an endochitinase.


Euphytica | 1994

Transgenic ‘Malling 26’ apple expressing the attacin E gene has increased resistance to Erwinia amylovora

John L. Norelli; Herb S. Aldwinckle; Luis Destéfano-Beltrán; Jesse M. Jaynes

Apple (Malus domestica) transgenic T1 was obtained by Agrobacterium tumefaciens- mediated transformation of Mailing 26 rootstock using the plasmid binary vector pLDB 15. pLDB 15 contains within its T-DNA a gene encoding the lytic protein attacin E. The integration of the attacin E gene into the apple genome was confirmed by Southern analysis. Northern analysis indicated the presence of an attacin E mRNA in plants inoculated with Erwinia amylovora. After inoculation of in vitro grown plants of T1, Mailing 26, and Mailing 7 (resistant control) with E. amylovora, the log10 of the inoculum concentration lethal to 50% of the plants was 5.4, 4.4, and 5.6, respectively. In greenhouse trials for resistance to fire blight, T1 was significantly more resistant than‘Mailing 26’.


Molecular Plant-microbe Interactions | 2008

Two Receptor-Like Genes, Vfa1 and Vfa2, Confer Resistance to the Fungal Pathogen Venturia inaequalis Inciting Apple Scab Disease

Mickael Malnoy; Mingliang Xu; E. E. Borejsza-Wysocka; Schuyler S. Korban; Herb S. Aldwinckle

The Vf locus, originating from the crabapple species Malus floribunda 821, confers resistance to five races of the fungal pathogen Venturia inaequalis, the causal agent of apple scab disease. Previously, a cluster of four receptor-like genes, Vfa1, Vfa2, Vfa3, and Vfa4, was identified within the Vf locus. Because the amino-acid sequence of Vfa3 is truncated, it was deemed nonfunctional. In this study, each of the three full-length Vfa genes was introduced into a plant cloning vector, pCAMBIA2301, and used for Agrobacterium-mediated transformation of two apple cultivars, Galaxy and McIntosh, to assess functionality of these genes and to characterize their roles in resistance to V. inaequalis. Transformed apple lines carrying each of Vfa1, Vfa2, or Vfa4 were developed, analyzed for the presence of the transgene using polymerase chain reaction and Southern blotting, and assayed for resistance to apple scab following inoculation with V. inaequalis. Transformed lines expressing Vfa4 were found to be susceptible to apple scab, whereas those expressing either Vfa1 or Vfa2 exhibited partial resistance to apple scab. Based on Western blot analysis as well as microscopic analysis of plant resistance reactions, the roles of Vfa1 and Vfa2 in apple scab disease resistance response are discussed.


Archive | 1983

Breeding Apple Rootstocks

James N. Cummins; Herb S. Aldwinckle

The ancient art of grafting makes it possible to fuse two or more different genetic entities into a single tree. Grafting permits the selection of a scion for its horticultural excellence and its adaptations to the aboveground environment—its capacity to produce high quality fruit ripening at a particular season and to survive the vicissitudes of weather and pests. About 250 years ago, apple growers began to recognize that grafting also permitted the selection of specific rootstocks for their capacities to influence favorably the productivity characteristics of the scion cultivar and for their abilities to survive the edaphic, climatic, and biotic components of the rootstock environment. Thus the 2- or 3- or 4-part tree can more easily possess diverse favorable attributes than can a fruiting cultivar on its own roots.


Journal of Applied Microbiology | 1997

Characterization of Erwinia amylovora strains using random amplified polymorphic DNA fragments (RAPDs)

M.T. Momol; E.A. Momol; W.F. Lamboy; J.L. Norelli; S.V. Beer; Herb S. Aldwinckle

The genetic diversity among 16 strains of Erwinia amylovora, chosen to represent different host plant origins and geographical regions, was investigated by RAPD analysis. One strain of Erwinia herbicola and one of Agrobacterium vitis were used as outgroups. Ninety‐eight different RAPD fragments were produced by polymerase chain reaction amplification with six different 10‐mer primers. RAPD banding profiles were found that enabled the Erw. amylovora strains to be distinguished from one another. Cluster analysis based on the number of RAPD fragments shared between strains showed that strains of Erw. amylovora isolated from subfamily Pomoideae formed a single group, whereas two strains from Rubus (subfamily Rosoideae) formed a second group. Two strains isolated from Asian pear on Hokkaido, Japan, formed a third group. Sets of RAPD fragments were identified that enabled each of the two host‐range groups and one geographical region (Hokkaido) of Erw. amylovora strains to be unambiguously distinguished from one another and from the outgroups. This study shows that strains of Erw. amylovora exhibit genetic diversity detectable by RAPD analysis, and that molecular and statistical analysis of RAPD fragments can be used both to distinguish between strains and to determine relatedness between them.

Collaboration


Dive into the Herb S. Aldwinckle's collaboration.

Top Co-Authors

Avatar

John L. Norelli

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip L. Forsline

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Gennaro Fazio

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge