Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Herman Höfte is active.

Publication


Featured researches published by Herman Höfte.


Current Biology | 2011

Pectin-Induced Changes in Cell Wall Mechanics Underlie Organ Initiation in Arabidopsis

Alexis Peaucelle; Siobhan A. Braybrook; Laurent Le Guillou; Emeric Bron; Cris Kuhlemeier; Herman Höfte

Tissue mechanics have been shown to play a key role in the regulation of morphogenesis in animals [1-4] and may have an equally important role in plants [5-9]. The aerial organs of plants are formed at the shoot apical meristem following a specific phyllotactic pattern [10]. The initiation of an organ from the meristem requires a highly localized irreversible surface deformation, which depends on the demethylesterification of cell wall pectins [11]. Here, we used atomic force microscopy (AFM) to investigate whether these chemical changes lead to changes in tissue mechanics. By mapping the viscoelasticity and elasticity in living meristems, we observed increases in tissue elasticity, correlated with pectin demethylesterification, in primordia and at the site of incipient organs. Measurements of tissue elasticity at various depths showed that, at the site of incipient primordia, the first increases occurred in subepidermal tissues. The results support the following causal sequence of events: (1) demethylesterification of pectin is triggered in subepidermal tissue layers, (2) this contributes to an increase in elasticity of these layers-the first observable mechanical event in organ initiation, and (3) the process propagates to the epidermis during the outgrowth of the organ.


Annual Review of Plant Biology | 2012

Growth Control and Cell Wall Signaling in Plants

Sebastian I. Wolf; Kian Hématy; Herman Höfte

Plant cell walls have the remarkable property of combining extreme tensile strength with extensibility. The maintenance of such an exoskeleton creates nontrivial challenges for the plant cell: How can it control cell wall assembly and remodeling during growth while maintaining mechanical integrity? How can it deal with cell wall damage inflicted by herbivores, pathogens, or abiotic stresses? These processes likely require mechanisms to keep the cell informed about the status of the cell wall. In yeast, a cell wall integrity (CWI) signaling pathway has been described in great detail; in plants, the existence of CWI signaling has been demonstrated, but little is known about the signaling pathways involved. In this review, we first describe cell wall-related processes that may require or can be targets of CWI signaling and then discuss our current understanding of CWI signaling pathways and future prospects in this emerging field of plant biology.


Frontiers in Plant Science | 2012

Cell wall mechanics and growth control in plants: the role of pectins revisited

Alexis Peaucelle; Siobhan A. Braybrook; Herman Höfte

How is the extensibility of growing plant cell walls regulated? In the past, most studies have focused on the role of the cellulose/xyloglucan network and the enigmatic wall-loosening agents expansins. Here we review first how in the closest relatives of the land plants, the Charophycean algae, cell wall synthesis is coupled to cell wall extensibility by a chemical Ca2+-exchange mechanism between Ca2+–pectate complexes. We next discuss evidence for the existence in terrestrial plants of a similar “primitive” Ca2+–pectate-based growth control mechanism in parallel to the more recent, land plant-specific, expansin-dependent process.


New Phytologist | 2010

A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls.

Sandra Pelletier; Jürgen Van Orden; Sebastian I. Wolf; Kris Vissenberg; Julien Delacourt; Yves Assoumou Ndong; Jérôme Pelloux; Volker Bischoff; Aurélie Urbain; Grégory Mouille; Gaetan Lemonnier; Jean-Pierre Renou; Herman Höfte

• We focused on a developmentally regulated growth acceleration in the dark-grown Arabidopsis hypocotyl to study the role of changes in cell wall metabolism in the control of cell elongation. • To this end, precise transcriptome analysis on dissected dark-grown hypocotyls, Fourier transform infrared (FT-IR) microspectroscopy and kinematic analysis were used. • Using a cellulose synthesis inhibitor, we showed that the growth acceleration marks a developmental transition during which growth becomes uncoupled from cellulose synthesis. We next investigated the cellular changes that take place during this transition. FT-IR microspectroscopy revealed significant changes in cell wall composition during, but not after, the growth acceleration. Transcriptome analysis suggested a role for cell wall remodeling, in particular pectin modification, in this growth acceleration. This was confirmed by the overexpression of a pectin methylesterase inhibitor, which caused a delay in the growth acceleration. • This study shows that the acceleration of cell elongation marks a developmental transition in dark-grown hypocotyl cells and supports a role for pectin de-methylesterification in the timing of this event.


Current Biology | 2012

Plant Cell Wall Homeostasis Is Mediated by Brassinosteroid Feedback Signaling

Sebastian I. Wolf; Jozef Mravec; Steffen Greiner; Grégory Mouille; Herman Höfte

Brassinosteroid (BR) signaling is required for normal plant growth as shown by the dwarf phenotype of loss-of-function BR biosynthetic or perception mutants. Despite a detailed understanding of the BR signaling network, it is not clear how exactly BRs control growth. For instance, genetic sector analysis shows that BRs, in contrast to most other growth regulators, act locally, presumably in an autocrine and/or paracrine mode, suggesting that they have some role in feedback regulation. Here, we show that at least one role for BRs in growth control is to ensure pectin-dependent cell wall homeostasis. Pectins are complex block cell wall polymers, which can be modified in the wall by the enzyme pectin methylesterase (PME). Genetic or pharmacological interference with PME activity causes dramatic changes in growth behavior, which are primarily the result of the activation of the BR signaling pathway. We propose that this activation of BR signaling is part of a compensatory response, which protects the plant against the loss of cell wall integrity caused by the imbalance in pectin modification. Thus, feedback signaling from the cell wall is integrated by the BR signaling module to ensure homeostasis of cell wall biosynthesis and remodeling.


Current Biology | 2015

The Control of Growth Symmetry Breaking in the Arabidopsis Hypocotyl

Alexis Peaucelle; Raymond Wightman; Herman Höfte

Complex shapes in biology depend on the ability of cells to shift from isotropic to anisotropic growth during development. In plants, this growth symmetry breaking reflects changes in the extensibility of the cell walls. The textbook view is that the direction of turgor-driven cell expansion depends on the cortical microtubule (CMT)-mediated orientation of cellulose microfibrils. Here, we show that this view is incomplete at best. We used atomic force microscopy (AFM) to study changes in cell-wall mechanics associated with growth symmetry breaking within the hypocotyl epidermis. We show that, first, growth symmetry breaking is preceded by an asymmetric loosening of longitudinal, as compared to transverse, anticlinal walls, in the absence of a change in CMT orientation. Second, this wall loosening is triggered by the selective de-methylesterification of cell-wall pectin in longitudinal walls, and, third, the resultant mechanical asymmetry is required for the growth symmetry breaking. Indeed, preventing or promoting pectin de-methylesterification, respectively, increased or decreased the stiffness of all the cell walls, but in both cases reduced the growth anisotropy. Finally, we show that the subsequent CMT reorientation contributes to the consolidation of the growth axis but is not required for the growth symmetry breaking. We conclude that growth symmetry breaking is controlled at a cellular scale by bipolar pectin de-methylesterification, rather than by the cellulose-dependent mechanical anisotropy of the cell walls themselves. Such a cell asymmetry-driven mechanism is comparable to that underlying tip growth in plants but also anisotropic cell growth in animal cells.


The Plant Cell | 2014

Growth Control: A Saga of Cell Walls, ROS, and Peptide Receptors

Sebastian I. Wolf; Herman Höfte

Despite an increasingly detailed understanding of endogenous and environmental growth-controlling signals and their signaling networks, little is known on how these networks are integrated with the cell expansion machinery. Members of the CrRLK1L family control cell wall properties and cell expansion in a variety of developmental and environmental contexts. Two recent reports provide exciting new insights into the mode of action of these RLKs. One study shows that one family member, FERONIA (FER), is required for the production of hydroxyl radicals in the female gametophyte, which causes pollen tube rupture and sperm cell release during fertilization. Another study shows that FER is a receptor for a signaling peptide (Rapid Alkalinization Factor 1 [RALF1]) that triggers cell wall alkalinization and growth arrest, possibly through the inhibition of plasma membrane H+-ATPase activity. RALF1 belongs to a large gene family, with a wide range of expression patterns. Other CrRLK1L family members therefore may also be receptors for RALF-like peptides. These findings have important implications for our understanding of the control of cell wall integrity during growth and raise new intriguing questions.


Plant Physiology and Biochemistry | 2000

Cell wall mutants

Mathilde Fagard; Herman Höfte; Samantha Vernhettes

An ever growing collection of cell wall mutants is yielding new insights into the mechanisms underlying the synthesis and assembly of cell walls in plants. In this review, we will provide an update on the use of genetic tools in plant cell wall research and we will discuss the lessons that can be drawn from the study of the first generation of mutants.


PLOS Genetics | 2017

The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses

Dieuwertje van der Does; Freddy Boutrot; Timo Engelsdorf; Jack Rhodes; Joseph F. McKenna; Samantha Vernhettes; Iko T. Koevoets; Nico Tintor; Manikandan Veerabagu; Eva Miedes; Cécile Segonzac; Milena Roux; Alice S. Breda; Christian S. Hardtke; Antonio Molina; Martijn Rep; Christa Testerink; Grégory Mouille; Herman Höfte; Thorsten Hamann; Cyril Zipfel

Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues.


Plant and Cell Physiology | 2015

The yin and yang of cell wall integrity control: brassinosteroid and FERONIA signaling.

Herman Höfte

Understanding how developmental and environmental signals control plant cell expansion requires an intimate knowledge of the architecture of the primary cell wall and the chemo-rheological processes that underlie cell wall relaxation. In this review I discuss recent findings that reveal a more prominent role than previously suspected for covalent bonds and pectin cross-links in primary cell wall architecture. In addition, genetic studies have uncovered a role for receptor kinases in the control of cell wall homeostasis in growing cells. The emerging view is that, upon cell wall disruption, compensatory changes are induced in the cell wall through the interplay between the brassinosteroid signaling module, which positively regulates wall extensibility and receptor kinases of the CrRLKL1 family, which may act as negative regulators of cell wall stiffness. These findings lift the tip of the veil of a complex signaling network allowing normal homeostasis in walls of growing cells but also crisis management under stress conditions.

Collaboration


Dive into the Herman Höfte's collaboration.

Top Co-Authors

Avatar

Samantha Vernhettes

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Kian Hématy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aline Voxeur

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

J. Van Orden

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Rodnay Sormani

Université Paris-Saclay

View shared research outputs
Researchain Logo
Decentralizing Knowledge