Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martine Gonneau is active.

Publication


Featured researches published by Martine Gonneau.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana

Thierry Desprez; Michal Juraniec; Elizabeth Faris Crowell; Hélène Jouy; Zaneta Pochylova; François Parcy; Herman Höfte; Martine Gonneau; Samantha Vernhettes

In all land plants, cellulose is synthesized from hexameric plasma membrane complexes. Indirect evidence suggests that in vascular plants the complexes involved in primary wall synthesis contain three distinct cellulose synthase catalytic subunits (CESAs). In this study, we show that CESA3 and CESA6 fused to GFP are expressed in the same cells and at the same time in the hypocotyl of etiolated seedlings and migrate with comparable velocities along linear trajectories at the cell surface. We also show that CESA3 and CESA6 can be coimmunoprecipitated from detergent-solubilized extracts, their protein levels decrease in mutants for either CESA3, CESA6, or CESA1 and CESA3, CESA6 and also CESA1 can physically interact in vivo as shown by bimolecular fluorescence complementation. We also demonstrate that CESA6-related CESA5 and CESA2 are partially, but not completely, redundant with CESA6 and most likely compete with CESA6 for the same position in the cellulose synthesis complex. Using promoter-β-glucuronidase fusions we show that CESA5, CESA6, and CESA2 have distinct overlapping expression patterns in hypocotyl and root corresponding to different stages of cellular development. Together, these data provide evidence for the existence of binding sites for three distinct CESA subunits in primary wall cellulose synthase complexes, with two positions being invariably occupied by CESA1 and CESA3, whereas at least three isoforms compete for the third position. Participation of the latter three isoforms might fine-tune the CESA complexes for the deposition of microfibrils at distinct cellular growth stages.


Plant Physiology | 2014

The Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex

Thomas Vain; Elizabeth Faris Crowell; Hélène Timpano; Eric Biot; Thierry Desprez; Nasim Mansoori; Luisa M. Trindade; Silvere Pagant; Stéphanie Robert; Herman Höfte; Martine Gonneau; Samantha Vernhettes

An endo-1,4-b-D-glucanase is part of the primary cell wall cellulose synthase complex (CSC) in the plasma membrane and plays a role in the trafficking of the CSC. Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by a large relative molecular weight cellulose synthase complex (CSC), which comprises at least three distinct cellulose synthases. Cellulose synthesis in plants or bacteria also requires the activity of an endo-1,4-β-d-glucanase, the exact function of which in the synthesis process is not known. Here, we show, to our knowledge for the first time, that a leaky mutation in the Arabidopsis (Arabidopsis thaliana) membrane-bound endo-1,4-β-d-glucanase KORRIGAN1 (KOR1) not only caused reduced CSC movement in the plasma membrane but also a reduced cellulose synthesis inhibitor-induced accumulation of CSCs in intracellular compartments. This suggests a role for KOR1 both in the synthesis of cellulose microfibrils and in the intracellular trafficking of CSCs. Next, we used a multidisciplinary approach, including live cell imaging, gel filtration chromatography analysis, split ubiquitin assays in yeast (Saccharomyces cerevisiae NMY51), and bimolecular fluorescence complementation, to show that, in contrast to previous observations, KOR1 is an integral part of the primary cell wall CSC in the plasma membrane.


Australian Journal of Plant Physiology | 2001

Localisation and expression of zeaxanthin epoxidase mRNA in Arabidopsis in response to drought stress and during seed development

Corinne Audran; Sylviane Liotenberg; Martine Gonneau; Helen M. North; Anne Frey; Karine Tap-Waksman; Nicole Vartanian; Annie Marion-Poll

Abscisic acid (ABA) is involved in seed development and plant adaptation to environmental stresses. ABA is synthesized from cleaved xanthophylls and zeaxanthin epoxidase (ZEP) is the enzyme responsible for the conversion of zeaxanthin to violaxanthin. In this study, we have characterized the ABA1 gene (AtZEP) of Arabidopsis thaliana L. and show that this complements the aba1 mutant, defective in zeaxanthin epoxidation. The molecular basis for two aba1 mutant alleles has been determined and the reduction in their AtZEP transcript levels correlates with the molecular defect identified. As AtZEP mRNA abundance was not affected in two other ABA-deficient mutants (aba2 and aba3) and in two ABA-insensitive mutants (abi1 and abi2), no feedback regulation of ABA biosynthesis seems to occur at the level of ZEP transcription. Steady state transcript levels increased in roots during rapid water stress as well as progressive drought stress, providing evidence that zeaxanthin epoxidation contributed to the regulation of ABA biosynthesis in roots and consequently to the plant adaptive response to hydric stress. In seeds in situ hybridization analysis detected AtZEP mRNA in the embryo cells from the globular stage to desiccation phase. In contrast, expression of AtZEP in maternal tissues was specific to the maturation phase. These results are discussed in relation to the role of ABA both in response to drought stress and in seed development.


Plant Physiology | 2011

CESA5 Is Required for the Synthesis of Cellulose with a Role in Structuring the Adherent Mucilage of Arabidopsis Seeds

Stuart Sullivan; Marie-Christine Ralet; Adeline Berger; Eugene Diatloff; Volker Bischoff; Martine Gonneau; Annie Marion-Poll; Helen M. North

Imbibed Arabidopsis (Arabidopsis thaliana) seeds are encapsulated by mucilage that is formed of hydrated polysaccharides released from seed coat epidermal cells. The mucilage is structured with water-soluble and adherent layers, with cellulose present uniquely in an inner domain of the latter. Using a reverse-genetic approach to identify the cellulose synthases (CESAs) that produce mucilage cellulose, cesa5 mutants were shown to be required for the correct formation of these layers. Expression of CESA5 in the seed coat was specific to epidermal cells and coincided with the accumulation of mucilage polysaccharides in their apoplast. Analysis of sugar composition showed that although total sugar composition or amounts were unchanged, their partition between layers was different in the mutant, with redistribution from adherent to water-soluble mucilage. The macromolecular characteristics of the water-soluble mucilage were also modified. In accordance with a role for CESA5 in mucilage cellulose synthesis, crystalline cellulose contents were reduced in mutant seeds and birefringent microfibrils were absent from adherent mucilage. Although the mucilage-modified5 mutant showed similar defects to cesa5 in the distribution of sugar components between water-soluble and adherent mucilage, labeling of residual adherent mucilage indicated that cesa5 contained less cellulose and less pectin methyl esterification. Together, the results demonstrate that CESA5 plays a major and essential role in cellulose production in seed mucilage, which is critical for the establishment of mucilage structured in layers and domains.


Current Biology | 2011

Phytochrome Regulation of Cellulose Synthesis in Arabidopsis

Volker Bischoff; Thierry Desprez; Grégory Mouille; Samantha Vernhettes; Martine Gonneau; Hermanus Höfte

Plant development is highly plastic and dependent on light quantity and quality monitored by specific photoreceptors. Although we have a detailed knowledge of light signaling pathways, little is known about downstream targets involved in growth control. Cell size and shape are in part controlled by cellulose microfibrils extruded from large cellulose synthase complexes (CSCs) that migrate in the plasma membrane along cortical microtubules. Here we show a role for the red/far-red light photoreceptor PHYTOCHROME B (PHYB) in the regulation of cellulose synthesis in the growing Arabidopsis hypocotyl. In this organ, CSCs contains three distinct cellulose synthase (CESA) isoform classes: nonredundant CESA1 and CESA3 and a third class represented by partially redundant CESA2, CESA5, and CESA6. Interestingly, in the dark, depending on which CESA subunits occupy the third position, CSC velocity is more or less inhibited through an interaction with microtubules. Activation of PHYB overrules this inhibition. The analysis of cesa5 mutants shows a role for phosphorylation in the control of CSC velocity. These results, combined with the cesa5 mutant phenotype, suggest that cellulose synthesis is fine tuned through the regulated interaction of CSCs with microtubules and that PHYB signaling impinges on this process to maintain cell wall strength and growth in changing environments.


Current Opinion in Plant Biology | 2010

Regulated trafficking of cellulose synthases

Elizabeth Faris Crowell; Martine Gonneau; York-Dieter Stierhof; Hermanus Höfte; Samantha Vernhettes

New findings reveal that proteins involved in cellulose biosynthesis undergo regulated trafficking between intracellular compartments and the plasma membrane. The coordinated secretion and internalization of these proteins involve both the actin and cortical microtubule cytoskeletons. This regulated trafficking allows the dynamic remodeling of cellulose synthase complex (CSC) secretion during cell expansion and differentiation. Several new actors of the cellulose synthesis machinery have been recently identified.


Plant Journal | 2014

Spatio-temporal analysis of cellulose synthesis during cell plate formation in Arabidopsis

Fabien Miart; Thierry Desprez; Eric Biot; Halima Morin; Katia Belcram; Hermanus Höfte; Martine Gonneau; Samantha Vernhettes

During cytokinesis a new crosswall is rapidly laid down. This process involves the formation at the cell equator of a tubulo-vesicular membrane network (TVN). This TVN evolves into a tubular network (TN) and a planar fenestrated sheet, which extends at its periphery before fusing to the mother cell wall. The role of cell wall polymers in cell plate assembly is poorly understood. We used specific stains and GFP-labelled cellulose synthases (CESAs) to show that cellulose, as well as three distinct CESAs, accumulated in the cell plate already at the TVN stage. This early presence suggests that cellulose is extruded into the tubular membrane structures of the TVN. Co-localisation studies using GFP-CESAs suggest the delivery of cellulose synthase complexes (CSCs) to the cell plate via phragmoplast-associated vesicles. In the more mature TN part of the cell plate, we observed delivery of GFP-CESA from doughnut-shaped organelles, presumably Golgi bodies. During the conversion of the TN into a planar fenestrated sheet, the GFP-CESA density diminished, whereas GFP-CESA levels remained high in the TVN zone at the periphery of the expanding cell plate. We observed retrieval of GFP-CESA in clathrin-containing structures from the central zone of the cell plate and from the plasma membrane of the mother cell, which may contribute to the recycling of CESAs to the peripheral growth zone of the cell plate. These observations, together with mutant phenotypes of cellulose-deficient mutants and pharmacological experiments, suggest a key role for cellulose synthesis already at early stages of cell plate assembly.


Planta | 2003

Protein N-glycosylation is similar in the moss Physcomitrella patens and in higher plants

Remco Viëtor; Corinne Loutelier-Bourhis; Anne-Catherine Fitchette; Pierre Margerie; Martine Gonneau; Loïc Faye; Patrice Lerouge

We have investigated the structure of glycans N-linked to the proteins of the moss Physcomitrella patens. The structural elucidation was carried out by western blotting using antibodies specific for N-glycan epitopes and by analysis of N-linked glycans enzymatically released from a total protein extract by combination of MALDI–TOF and MALDI–PSD mass spectrometry analysis. Nineteen N-linked oligosaccharides were characterised ranging from high-mannose-type and truncated paucimannosidic-type to complex-type N-glycans harbouring core-xylose, core-α(1,3)-fucose and Lewisa, as previously described for proteins from higher plants. This demonstrates that the processing of N-linked glycans, as well as the specificity of glycosidases and glycosyltransferases involved in this processing, are highly conserved between P. patens and higher plants. As a consequence, P. patens appears to be a new promising model organism for the investigation of the biological significance of protein N-glycosylation in the plant kingdom, taking advantage of the potential for gene targeting in this moss.


The Plant Cell | 2014

The jiaoyao1 Mutant Is an Allele of korrigan1 That Abolishes Endoglucanase Activity and Affects the Organization of Both Cellulose Microfibrils and Microtubules in Arabidopsis

Lei Lei; Tian Zhang; Richard Strasser; Christopher M. Lee; Martine Gonneau; Lukas Mach; Samantha Vernhettes; Seong H. Kim; Daniel J. Cosgrove; Shundai Li; Ying Gu

Characterizing the jiaoyao1 mutant represents a significant advance in our understanding of the role of Arabidopsis GH9A1/KORRIGAN1 in the proper organization of cellulose microfibrils and cortical microtubules. This study reveals that endoglucanase activity is important for cellulose biosynthesis. In higher plants, cellulose is synthesized by plasma membrane–localized cellulose synthase complexes (CSCs). Arabidopsis thaliana GH9A1/KORRIGAN1 is a membrane-bound, family 9 glycosyl hydrolase that is important for cellulose synthesis in both primary and secondary cell walls. Most previously identified korrigan1 mutants show severe phenotypes such as embryo lethality; therefore, the role of GH9A1 in cellulose synthesis remains unclear. Here, we report a novel A577V missense mutation, designated jiaoyao1 (jia1), in the second of the glycosyl hydrolase family 9 active site signature motifs in GH9A1. jia1 is defective in cell expansion in dark-grown hypocotyls, roots, and adult plants. Consistent with its defect in cell expansion, this mutation in GH9A1 resulted in reduced cellulose content and reduced CSC velocity at the plasma membrane. Green fluorescent protein–GH9A1 is associated with CSCs at multiple locations, including the plasma membrane, Golgi, trans-Golgi network, and small CESA-containing compartments or microtubule-associated cellulose synthase compartments, indicating a tight association between GH9A1 and CSCs. GH9A1A577V abolishes the endoglucanase activity of GH9A1 in vitro but does not affect its interaction with CESAs in vitro, suggesting that endoglucanase activity is important for cellulose synthesis. Interestingly, jia1 results in both cellulose microfibril and microtubule disorganization. Our study establishes the important role of endoglucanase in cellulose synthesis and cellulose microfibril organization in plants.


Plant Physiology | 2014

Catalytic subunit stoichiometry within the cellulose synthase complex

Martine Gonneau; Thierry Desprez; Alain Guillot; Samantha Vernhettes; Herman Höfte

Three distinct catalytic subunits are present in an equimolecular ratio in the cellulose synthase complex. Cellulose synthesis is driven by large plasma membrane-inserted protein complexes, which in plants have 6-fold symmetry. In Arabidopsis (Arabidopsis thaliana), functional cellulose synthesis complexes (CSCs) are composed of at least three different cellulose synthase catalytic subunits (CESAs), but the actual ratio of the CESA isoforms within the CSCs remains unresolved. In this work, the stoichiometry of the CESAs in the primary cell wall CSC was determined, after elimination of CESA redundancy in a mutant background, by coimmunoprecipitation and mass spectrometry using label-free quantitative methods. Based on spectral counting, we show that CESA1, CESA3, and CESA6 are present in a 1:1:1 molecular ratio.

Collaboration


Dive into the Martine Gonneau's collaboration.

Top Co-Authors

Avatar

Samantha Vernhettes

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Herman Höfte

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Thierry Desprez

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Michel Laloue

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Faris Crowell

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Florent Brun

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annie Marion-Poll

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Isabelle Chérel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Eric Biot

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge