Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Herman S. Mansur is active.

Publication


Featured researches published by Herman S. Mansur.


Materials Research-ibero-american Journal of Materials | 2006

Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption

Elizabeth Fonseca dos Reis; Fábia Souza Campos; Andrey Pereira Lage; Rômulo Cerqueira Leite; Luiz Guilherme Heneine; Wander L. Vasconcelos; Zélia Inês Portela Lobato; Herman S. Mansur

Polyvinyl alcohol (PVA), PVA crosslinked with glutaraldehyde hydrogels (PVA/GA), PVA with tetraethylorthosilicate (PVA/TEOS) and PVA/GA/TEOS hybrids with recombinant MPB70 protein (rMPB70) incorporated were chemically characterized by Fourier transform infrared spectroscopy (FTIR). FTIR spectra of PVA hydrogel samples showed the absorption regions of the specific chemical groups associated with poly(vinyl alcohol) (-OH, -CO, -CH2) and PVA/GA confirming the formation of crosslinked hydrogel (duplet -CH). It was observed C-H broad alkyl stretching band (n = 2850-3000 cm-1) and typical strong hydroxyl bands for free alcohol (nonbonded -OH stretching band at n = 3600-3650 cm-1), and hydrogen bonded band (n = 3200-3570 cm-1). The most important vibration bands related to silane alcoxides have been verified on FTIR spectra of PVA/TEOS and PVA/GA/TEOS hybrids (Si-O-Si, n = 1080 and n = 450 cm-1; Si-OH, n = 950 cm-1). FTIR spectra of f PVA hydrogel with rMPB70 incorporated have indicated the specific groups usually found in protein structures, such as amides I, II and III, at 1680-1620 cm-1, 1580-1480 cm-1 and 1246 cm-1, respectively. These results have given strong evidence that recombinant protein rMPB70 was successfully adsorbed in the hydrogels and hybrids networks. These PVA based hydrogels and hybrids were further used in immunological assays (Enzyme-Linked Immunosorbent Assay - ELISA). Tests were performed to detect antibodies against rMPB70 protein in serum samples from bovines that were positive in the tuberculin test. Corresponding tests were carried out without PVA samples in microtiter plates as control. Similar results were found for commercially available microplates and PVA based hydrogels and hybrids developed in the present work regarding to immunoassay sensitivity and specificity response.


Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2010

Quantum dots and nanocomposites

Herman S. Mansur

Quantum dots (QDs), also known as semiconducting nanoparticles, are promising zero-dimensional advanced materials because of their nanoscale size and because they can be engineered to suit particular applications such as nonlinear optical devices (NLO), electro-optical devices, and computing applications. QDs can be joined to polymers in order to produce nanocomposites which can be considered a scientific revolution of the 21st century. One of the fastest moving and most exciting interfaces of nanotechnology is the use of QDs in medicine, cell and molecular biology. Recent advances in nanomaterials have produced a new class of markers and probes by conjugating semiconductor QDs with biomolecules that have affinities for binding with selected biological structures. The nanoscale of QDs ensures that they do not scatter light at visible or longer wavelengths, which is important in order to minimize optical losses in practical applications. Moreover, at this scale, quantum confinement and surface effects become very important and therefore manipulation of the dot diameter or modification of its surface allows the properties of the dot to be controlled. Quantum confinement affects the absorption and emission of photons from the dot. Thus, the absorption edge of a material can be tuned by control of the particle size. This paper reviews developments in the myriad of possibilities for the use of semiconductor QDs associated with molecules producing novel hybrid nanocomposite systems for nanomedicine and bioengineering applications.


Journal of Non-crystalline Solids | 2000

Sol-gel silica based networks with controlled chemical properties

Herman S. Mansur; Wander L. Vasconcelos; Rubia F. S. Lenza; Rodrigo L. Oréfice; Elizabeth Fonseca dos Reis; Zéila P Lobato

Abstract In this work, different chemical functionalities, both organic and inorganic, were inserted in a silica glass based sol–gel derived network to create specific chemical activities. Modified silica glass networks were prepared by reacting alkoxysilanes with different chemical functionalities, such as tetraethoxysilane (TEOS), aminopropyl triethoxysilane (APS) and mercaptopropyl triethoxysilane (MPTS), among others. The obtained gels were evaluated by using infrared spectroscopy, mercury picnometry and electron microscopy. The chemical activity of the created multifunctional surfaces was evaluated by the ability of the incorporated proteins to remain adsorbed onto the different gels. Porcine insulin (PI) and bovine serum albumin (BSA) were impregnated into modified networks and desorption of those proteins was monitored. Results showed that gels with multifunctionalities regularly dispersed can be successfully produced by optimizing some of the processing parameters of the gels, such as pH and concentration of reactants. Results also revealed that the type and concentration of chemical functionalities within the gels regulate the ability of incorporated proteins to remain adsorbed on them, suggesting that chemically patterned surfaces and interfaces can be prepared which regulate protein–substrate interactions.


Polymer Testing | 2003

In situ evaluation of the polymerization kinetics and corresponding evolution of the mechanical properties of dental composites

Rodrigo L. Oréfice; José Augusto César Discacciati; Alisson Discacciati Neves; Herman S. Mansur; Wellington Corrêa Jansen

Polymer composites have been used in dental applications for more than 25 years. Although their properties and behavior have been systematically improved, they still are not able to produce dental restorations chemically, dimensionally and mechanically stable for long periods of time. Low degrees of monomer conversion and poor processing control are some of the main features responsible for the materials instability. In this work, the monomer conversion of dental composites during visible light irradiation was in situ monitored by infrared spectroscopy. The relationship between degree of conversion and mechanical properties was obtained by evaluating the microhardness of composites with different degrees of conversion. The relationship obtained was then used to identify the evolution of the mechanical properties during photopolymerization.


Materials Science and Engineering: C | 2016

Thermogelling chitosan-collagen-bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering.

Cheisy D.F. Moreira; Sandhra M. Carvalho; Herman S. Mansur; Marivalda M. Pereira

Recently, stimuli-responsive nanocomposite-derived hydrogels have gained prominence in tissue engineering because they can be applied as injectable scaffolds in bone and cartilage repair. Due to the great potential of these systems, this study aimed to synthesize and characterize novel thermosensitive chitosan-based composites, chemically modified with collagen and reinforced by bioactive glass nanoparticles (BG) on the development of injectable nanohybrids for regenerative medicine applications. Thus, the composite hydrogels were extensively characterized by structural, morphological, rheological, and biological testing. The composites showed thermosensitive response with the gelation temperature at approximately 37 °C, which is compatible with the human body temperature. In addition, scanning electron microscopy (SEM) analysis indicated that the chitosan hydrogels exhibited 3D-porous structures, and the incorporation of collagen in the system caused increase on the average pore size. Fourier transform infrared spectroscopy (FTIR) analysis indicated the main functional groups of each component of the composite system and their chemical interactions forming the scaffold. Moreover, rheological measurements were employed to assess the viscoelastic behavior of the hydrogels as a function of the temperature. The results demonstrated that the addition of collagen and bioactive glass increases the mechanical properties after the gelation process. The addition of 2 wt.% of BG nanoparticles caused an increase of approximately 39% on stiffness compared to pure chitosan and the addition of 30 wt.% collagen caused a further increase on the stiffness by 95%. The cytotoxicity and cell viability of the hydrogels were assessed by MTT and LIVE/DEAD® assays, where the results demonstrated no toxic effect of the composites on the human osteosarcoma cell culture (SAOS) and kidney cells line of human embryo (HEK 293 T). Hence, it can be stated that innovative composites were successfully designed and synthesized in this research with promising potential to be used as thermoresponsive biomaterials for bone-tissue bioapplications.


Spectroscopy | 2002

FTIR and UV‒vis study of chemically engineered biomaterial surfaces for protein immobilization

Herman S. Mansur; Rodrigo L. Oréfice; Marivalda M. Pereira; Zélia Inês Portela Lobato; Wander L. Vasconcelos; Lucas José de Campos Machado

The biomaterials research field has broadened in the last 3 decades, including replacement of diseased or damaged parts, assist in healing, correct and improve functional abnormality, drug delivery systems, immunological kits and biosensors. Proteins play crucial role in almost every biological system. They are involved in enzymatic catalysis, transport and storage, coordinated motion, mechanical support, immune protection, control of growth and cell differentiation among many others. The immobilization of proteins onto surface functionalized substrates has been one of the most promising areas in bioengineering field. It is important to note that the term immobilization can refer either to a temporary or to a permanent localization of the biomolecule on or within a support. Proteins have very particular chain configurations and conformations that promote high levels of specificity during chemical interactions. In the present work, we aimed to study the phenomenon of protein immobilization onto biomaterial with chemically engineered surface. We have tailored the surface of the porous gels of SiO2 with 5 different silane surface modifying agents: tetraethoxysilane (TEOS), 3‒mercaptopropyltrimethoxysilane (MPTMS) and 3‒aminopropyltriethoxysilane (APTES), 3‒glycidoxypropyltrimethoxysilane (GPTMS) and 3‒isocyanatopropyltriethoxysilane (ICPES). Fourier Transform Infrared Spectroscopy (FTIR) was used to characterize the presence of all specific chemical groups in the materials. The surface functionalized gels were then immersed in porcine insulin (PI) solutions for protein immobilization. The incorporation of protein within the gels was also monitored by FTIR spectroscopy. The kinetics of protein adsorption and desorption from the gel matrix in vitro tests were monitored by UV‒visible spectroscopy. We could not observe any evidence of denaturation of insulin after its desorption from gel matrices using UV‒visible spectroscopy technique. In vivo tests with adult male rats were used to verify the immobilized insulin bioactivity after implantation of different biomaterial with functionalized surfaces. Plasma glucose levels were obtained by using the Glucose GOD‒ANA Colorimetric Assay. All surface modified materials have presented acute hypoglycemic peak response associated with the insulin bioactivity.


Biomedical Materials | 2013

Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications

Agda Aline Rocha de Oliveira; Dickson Alves de Souza; Luisa Lima Silveira Dias; Sandhra M. Carvalho; Herman S. Mansur; Marivalda M. Pereira

Nanotechnology offers a new strategy to develop novel bioactive materials, given that nano-scaled biomaterials exhibit an enhanced biocompatibility and bioactivity. In this work, we developed a method for the synthesis of spherical bioactive glass nanoparticles (BGNP) aimed at producing biomaterials for potential use in the repair of hard tissues. The BGNP were prepared using the sol-gel process based on the reaction of alkoxides and other precursors in aqueous media for obtaining the oxide-ternary system with the stoichiometric proportion of 60% SiO2, 36% CaO and 4% P2O5. The system was extensively characterized by Fourier transform infrared, x-ray diffraction and scanning electron microscope/energy-dispersive x-ray spectroscopy with regard to chemical composition, crystallinity and morphology. Moreover, the results suggested the BGNP to be highly bioactive, which was confirmed by the formation of a hydroxyapatite biomimetic layer on the material surfaces upon immersion in simulated body fluid solution. In addition, the bioactivity response toward the developed BGNPs was assessed by direct contact of osteoblast cells using resazurin and alkaline phosphatase assays. The new BGNP have presented a significant increase in the osteoblast in vitro cytocompatibility behavior as compared to similar micro-sized bioactive glass particles. Such improvement in the overall bioactive behavior of BGNP was attributed to the much higher surface area causing enhanced interactions at the cell-nanomaterial interfaces. Hence, based on the results, the BGNP produced are the biomaterials to be potentially utilized in hard tissue engineering applications.


Materials Research-ibero-american Journal of Materials | 2007

Preparation of hybrid biomaterials for bone tissue engineering

Vilma C. Costa; Hermes S. Costa; Wander L. Vasconcelos; Marivalda M. Pereira; Rodrigo L. Oréfice; Herman S. Mansur

Tissue engineering has evolved from the use of biomaterials for bone substitution that fulfill the clinical demands of biocompatibility, biodegradability, non-immunogeneity, structural strength and porosity. Porous scaffolds have been developed in many forms and materials, but few reached the need of adequate physical, biological and mechanical properties. In the present paper we report the preparation of hybrid porous polyvinyl alcohol (PVA)/bioactive glass through the sol-gel route, using partially and fully hydrolyzed polyvinyl alcohol, and perform structural characterization. Hybrids containing PVA and bioactive glass with composition 58SiO2-33CaO-9P2O5 were synthesized by foaming a mixture of polymer solution and bioactive glass sol-gel precursor solution. Sol-gel solution was prepared from mixing tetraethoxysilane (TEOS), triethylphosphate (TEP), and calcium chloride as chemical precursors. The hybrid composites obtained after aging and drying at low temperature were chemically and morphologically characterized through infrared spectroscopy and scanning electron microscopy. The degree of hydrolysis of PVA, concentration of PVA solution and different PVA-bioglass composition ratios affect the synthesis procedure. Synthesis parameters must be very well combined in order to allow foaming and gelation. The hybrid scaffolds obtained exhibited macroporous structure with pore size varying from 50 to 600 µm.


Biomedical Materials | 2007

Biocompatibility evaluation of hydroxyapatite/collagen nanocomposites doped with Zn+2

Maria Helena Santos; Patricia Valério; Alfredo M. Goes; Maria de Fátima Leite; L G D Heneine; Herman S. Mansur

In this work, novel composites based on calcium phosphates (CaP)/collagen (COL) doped with Zn(+2) have been synthesized. They were characterized by SEM coupled to EDS microprobe in order to evaluate their morphology and chemical composition, respectively. The biocompatibility of these synthetic CaP/COL nanocomposites doped and undoped with Zn(+2) was investigated through osteoblast cell culture assay. Calcium phosphates were produced via aqueous precipitation routes where two different phases were obtained, hydroxyapatite (HAP) and biphasic hydroxyapatite-betatricalcium phosphate (HAPbetaTCP). In the sequence, the type-I collagen (COL) was added to the inorganic phase based on calcium phosphate and the mixture was blended until a homogenous composite was obtained. Zn(+2) aqueous solution (1.0 wt%) was used as the doping reagent. The cell viability and the alkaline phosphatase production of osteoblasts in the presence of the composites were evaluated and compared to control osteoblasts. Also, the biocompatibility of the composite was investigated through cell morphological analysis using optical microscopy of osteoblasts. All experiments were performed in triplicates (n = 3) from three different experiments. They were analyzed by variance test (ANOVA) and Bonferronis post-test with differences statistically significant at p < 0.05. The results showed that the CaP/COL composites doped and undoped with Zn(+2) did not present alterations in cell morphology in 72 h and had similar cell viability and alkaline phosphatase activity to the control. All the tested CaP/COL composites showed adequate biological properties with the potential to be used in bone tissue replacement applications.


Química Nova | 2008

Preparação e caracterização de blendas de quitosana/poli(álcool vinílico) reticuladas quimicamente com glutaraldeído para aplicação em engenharia de tecido

Ezequiel de Souza Costa; Herman S. Mansur

In this study, novel Chitosan/PVA based films were chemically crosslinked by glutaraldehyde, under pH=(4,00 ±0,05), in order to achieve structures tailored for wound tissue engineering applications. Both precursors and developed films were characterized by FTIR, SEM and XRD in order to determine the presence of chemicals groups and nanostructural order, respectively. The results have shown that the glutaraldehyde crosslinking have altered the crystallinity of pure chitosan and the increase on the C=N bands and simultaneous decrease on NH2 bands suggested that Chitosan/GA crosslinking has preference to occur in carbon-2 of the saccharide ring by the Schiffs base reaction. Also, FTIR spectroscopy clearly showed that crosslinking has also taken place with blends of PVA and chitosan. The mechanical properties presented high degree dependence with on the increase of the content of chitosan and glutaraldehyde. The results have indicated that, by controlling the ratio [PVA]/[chitosan] in the blends and the extent of chemical crosslinking, it was possible to tailor the hybrid network produced aiming to obtain properties of interest for the specific application.

Collaboration


Dive into the Herman S. Mansur's collaboration.

Top Co-Authors

Avatar

Alexandra A.P. Mansur

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Marivalda M. Pereira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Sandhra M. Carvalho

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Rodrigo L. Oréfice

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Wander L. Vasconcelos

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Hermes S. Costa

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zélia Inês Portela Lobato

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Luiz C.A. Oliveira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Fábio P. Ramanery

Universidade Federal de Minas Gerais

View shared research outputs
Researchain Logo
Decentralizing Knowledge