Hernán B. Rodríguez
Facultad de Ciencias Exactas y Naturales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hernán B. Rodríguez.
Photochemical and Photobiological Sciences | 2004
Hernán B. Rodríguez; M. Gabriela Lagorio; Enrique San Román
Rose Bengal adsorbed on microgranular cellulose was studied in the solid phase by total and diffuse reflectance and steady-state emission spectroscopy. A simple monomer-dimer equilibrium fitted reflectance data up to dye loadings of 4 x 10(-7) mol (g cellulose)(-1) and allowed calculation of monomer and dimer spectra. Further increase of dye loading resulted in the formation of higher aggregates. Observed emission and excitation spectra and quantum yields were corrected for reabsorption and reemission of luminescence, using a previously developed model, within the assumption that only monomers are luminescent [M. G. Lagorio, L. E. Dicelio, M. I. Litter and E. San Roman, J. Chem. Soc., Faraday Trans., 1998, 94, 419]. An apparent increase of fluorescence quantum yield with dye loading was found, which was attributed to the occurrence of dimer fluorescence. Extension of the model to two luminescent species (i.e. monomer and dimer) yielded constant fluorescence quantum yields for the monomer, phiM= 0.120 +/- 0.004, and for the dimer, phiD= 0.070 +/- 0.006. The monomer quantum yield is close to the value found for the same dye in basic ethanol. The presence of fluorescent dimers and calculated quantum yields are supported by analysis of the excitation spectra and other experimental evidence. The possible occurrence of non-radiative energy transfer and the effect of surface charge on the properties of the dimer are analyzed.
Langmuir | 2010
Manuel J. Llansola Portolés; Pedro M. David Gara; Mónica L. Kotler; Sonia G. Bertolotti; Enrique San Román; Hernán B. Rodríguez; Mónica C. Gonzalez
The effect of molecular oxygen and water on the blue photoluminescence of silicon nanoparticles synthesized by anodic oxidation of silicon wafers and surface functionalized with 2-methyl 2-propenoic acid methyl ester is investigated. The particles of 3 +/- 1 nm diameter and a surface composition of Si(3)O(6)(C(5)O(2)H(8)) exhibit room-temperature luminescence in the wavelength range 300-600 nm upon excitation with 300-400 nm light. The luminescence shows vibronic resolution and high quantum yields in toluene suspensions, while a vibronically unresolved spectrum and lower emission quantum yields are observed in aqueous suspensions. The luminescence intensity, though not the spectrum features, depends on the presence of dissolved O(2). Strikingly, the luminescence decay time on the order of 1 ns does not depend on the solvent or on the presence of O(2). To determine the mechanisms involved in these processes, time-resolved and steady-state experiments are performed. These include low-temperature luminescence, heavy atom effect, singlet molecular oxygen ((1)O(2)) phosphorescence detection, reaction of specific probes with (1)O(2), and determination of O(2) and N(2) adsorption isotherms at 77 K. The results obtained indicate that physisorbed O(2) is capable of quenching nondiffusively the particle luminescence at room temperature. The most probable mechanism for (1)O(2) generation involves the energy transfer from an exciton singlet state to O(2) to yield an exciton triplet of low energy (<0.98 eV) and (1)O(2). In aqueous solutions, excited silicon nanoparticles are able to reduce methylviologen on its surface.
Photochemical and Photobiological Sciences | 2009
Jorge M. Meichtry; Verónica Rivera; Yesica Di Iorio; Hernán B. Rodríguez; Enrique San Román; María A. Grela; Marta I. Litter
Hydroxoaluminiumtricarboxymonoamide phthalocyanine (AlTCPc) adsorbed at different loadings on TiO(2) Degussa P-25 was tested for Cr(vi) photocatalytic reduction under visible irradiation in the presence of 4-chlorophenol (4-CP) as sacrificial donor. A rapid reaction takes place in spite of the presumable aggregation of the dye on the TiO(2) surface. The removal of Cr(vi) is fairly negligible under visible-light irradiation, either without photocatalyst or in the presence of bare TiO(2). The fast capture of conduction band electrons by Cr(vi), which forms a surface complex with TiO(2), inhibits the formation of reactive oxygen species in the reductive pathway. This fact and the easier oxidation of 4-CP as compared to AlTCPc hinder the photobleaching of the dye and make feasible Cr(vi) reduction under visible irradiation. The consumption of Cr(vi) follows a pseudo-first order kinetics; the decay constant depends, in the studied range, on the photocatalyst mass, but it is barely affected by dye loading. The presence of 4-CP is essential, but its concentration has no effect on the Cr(vi) decay rate. Oxidation products of 4-CP, such as hydroquinone, catechol or benzoquinone, are not observed. Direct evidence of the one-electron reduction of Cr(vi) to Cr(v) was obtained by EPR spectroscopy using citric acid as Cr(v) trapping agent. In this case, disappearance of Cr(v) also follows a first order decay, but conduction band electrons do not seem to be involved. The fact that oxidation products of 4-CP are not observed is consistent with the fast dark removal of reaction intermediates by Cr(v), proved by EPR.
Photochemistry and Photobiology | 2005
Hernán B. Rodríguez; Analia Iriel; Enrique San Román
Abstract Absorption and fluorescence properties of methylene blue (MB), a well-known singlet molecular oxygen photosensitizer, and its mixtures with pheophorbide-a (Pheo) sorbed on microgranular cellulose are studied, with emphasis on radiative and nonradiative energy transfer from Pheo to MB. Although pure MB builds up dimeric species on cellulose even at 2 × 10−8 mol g−1, addition of 2.05 × 10−7 mol g−1 Pheo largely inhibits aggregation up to nearly 10−6 mol g−1 MB. At the same time, the absorption spectrum of monomeric MB in the presence of Pheo differs from the spectrum in pure cellulose. Both effects reveal a strong influence of Pheo on the medium properties. A model relying entirely on experimental data is developed, through which energy transfer efficiencies can be calculated for thin and thick layers of dye-loaded cellulose. At the largest concentration of MB assuring no dye aggregation, nonradiative energy transfer efficiencies reach a maximum value of nearly 40%. This value is quite high, taking into account the low fluorescence quantum yield of Pheo, Φ = 0.21, and results from the existence of high local concentrations of the acceptor within the supporting material. These results show that large energy transfer rates can exist in a system devoid of any special molecular organization.
Molecules | 2012
P. Duarte; D.P. Ferreira; Isabel Ferreira Machado; Luis Filipe Vieira Ferreira; Hernán B. Rodríguez; Enrique San Román
The photophysical behaviour of phloxine B adsorbed onto microcrystalline cellulose was evaluated by reflectance spectroscopy and laser induced time-resolved luminescence in the picosecond-nanosecond and microsecond-millisecond ranges. Analysis of the absorption spectral changes with concentration points to a small tendency of the dye to aggregate in the range of concentrations under study. Prompt fluorescence, phosphorescence and delayed fluorescence spectral decays were measured at room temperature and 77 K, without the need of sample degassing because cellulose protects triplet states from oxygen quenching. In all cases, spectral changes with time and lifetime distribution analysis were consistent with the dye coexisting in two different environments: dyes tightly entrapped between polymer chains in crystalline regions of cellulose showed longer fluorescence and phosphorescence lifetimes and more energetic triplet states, while dyes adsorbed in more amorphous regions of the support showed shorter lifetimes and less energetic triplet states. This behaviour is discussed in terms of the different dye-support interactions in both kinds of adsorption sites.
Photochemistry and Photobiology | 2013
Hernán B. Rodríguez; Enrique San Román
Photoactive materials based on dye molecules incorporated into thin films or bulk solids are useful for applications as photosensitization, photocatalysis, solar cell sensitization and fluorescent labeling, among others. In most cases, high concentrations of dyes are desirable to maximize light absorption. Under these circumstances, the proximity of dye molecules leads to the formation of aggregates and statistical traps, which dissipate the excitation energy and lower the population of excited states. The search for enhancement of light collection, avoiding energy wasting requires accounting the photophysical parameters quantitatively, including the determination of quantum yields, complicated by the presence of light scattering when particulate materials are considered. In this work we summarize recent advances on the photophysics of dyes in light‐scattering materials, with particular focus on the effect of dye concentration. We show how experimental reflectance, fluorescence and laser‐induced optoacoustic spectroscopy data can be used together with theoretical models for the quantitative evaluation of inner filter effects, fluorescence and triplet formation quantum yields and energy transfer efficiencies.
Photochemistry and Photobiology | 2012
Hernán B. Rodríguez; Enrique San Román; P. Duarte; Isabel Ferreira Machado; Luis Filipe Vieira Ferreira
The photophysical behavior of eosin Y adsorbed onto microcrystalline cellulose was evaluated by reflectance spectroscopy, steady‐state fluorescence spectroscopy and laser induced time‐resolved luminescence. On increasing the concentration of the dye, small changes in absorption spectra, fluorescence redshifts and fluorescence quenching are observed. Changes in absorption spectra point to the occurrence of weak exciton interactions among close‐lying dye molecules, whereas fluorescence is affected by reabsorption and excitation energy trapping. Phosphorescence decays are concentration independent as a result of the negligible exciton interaction of dye pairs in the triplet state. Lifetime distribution and bilinear regression analyses of time‐resolved phosphorescence and delayed fluorescence spectra reveal the existence of two different environments: long‐lived, more energetic triplet states arise from dyes tightly entrapped within the cellulose chains, while short‐lived, less‐energetic states result from dyes in more flexible environments. Stronger hydrogen bond interactions between the dye and cellulose hydroxyl groups lead in the latter case to a lower triplet energy and faster radiationless decay. These effects, observed also at low temperatures, are similar to those encountered in several amorphous systems, but rather than being originated in changes in the environment during the triplet lifetime, they are ascribed in this case to spatial heterogeneity.
Annals of the New York Academy of Sciences | 2008
Hernán B. Rodríguez; Enrique San Román
The photophysics of several systems composed of a single dye or pairs of dyes attached to solid particles has been studied in the dry solid state at high dye concentrations taking into account light scattering and inner filter effects. Interaction among dye molecules and singlet‐singlet energy transfer are relevant in these conditions, as has been demonstrated for pairs of dyes with suitable spectral overlap. For single dyes, after correction for radiative energy transfer, fluorescence quenching is observed as the surface concentration increases. This effect is explained by two different trapping models. Irrespective of the nature of the traps, concentration quenching may be of static (trap absorption) and dynamic (energy transfer) nature. The unraveling of energy trapping mechanisms is a key to the development of efficient photoactive solid materials.
Photochemistry and Photobiology | 2007
Hernán B. Rodríguez; Enrique San Román
Rhodamine 101 (R101) was chemically attached onto microcrystalline cellulose and methylene blue (MB) was adsorbed to a sample bearing nearby 6 × 10−7 mol R101 (g cellulose)−1. The system was studied by reflectance and emission spectroscopy in the solid state. R101 shows no aggregation in these conditions and, while pure MB builds up dimers on cellulose even at 2 × 10−8 mol g−1, in the presence of R101 no evidence on selfaggregation or heteroaggregation is found up to around 10−6 mol g−1. No exciplex formation is found as well. The overall fluorescence quantum yield measured on thick layers, once re‐absorption effects are accounted for, amounts to 0.80 ± 0.07 for pure R101 and decreases steadily on increasing the concentration of MB. Results demonstrate the occurrence of radiative and nonradiative singlet energy transfer from R101 to MB. For thick layers of particles, the combined effect of both kinds of energy transfer amounts to nearly 80% at the highest acceptor concentration, while nonradiative transfer reaches 60% both for thin and optically thick layers. The dependence of nonradiative energy transfer efficiencies on the acceptor concentration is analyzed and the origin of departures from Förster behavior at low acceptor concentration is discussed.
Journal of Physical Chemistry A | 2014
Yair Litman; Matthew G. Voss; Hernán B. Rodríguez; Enrique San Román
Laser-induced optoacoustic spectroscopy (LIOAS), diffuse reflectance laser flash photolysis (DRLFP), and laser-induced luminescence (LIL) have been applied in conjunction to the determination of triplet state quantum yields of Rose Bengal (RB) supported on microcrystalline cellulose, a strongly light-scattering solid. Among the three used methods, the only one capable of providing absolute triplet quantum yields is LIOAS, but DRLFP and LIL aid in demonstrating that the LIOAS signal arises in fact from the triplet state and confirm the trend found with RB concentration. The coherence found for the three techniques demonstrates the usefulness of the approach. Observed triplet quantum yields are nearly constant within a limited concentration range, after which they decay strongly due to the generation of inactive dye aggregates or energy trapping centers. When quantum yields are divided by the fraction of absorbed light exciting the dye, the quotient falls off steadily with concentration, following the same trend as the observed fluorescence quantum yield. The conditions that maximize triplet formation are determined as a compromise between the rising light absorption and the decrease of quantum yield with RB concentration.