Hernan Lorenzi
J. Craig Venter Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hernan Lorenzi.
Nature | 2008
Jane M. Carlton; John H. Adams; Joana C. Silva; Shelby Bidwell; Hernan Lorenzi; Elisabet Caler; Jonathan Crabtree; Samuel V. Angiuoli; Emilio F. Merino; Paolo Amedeo; Qin Cheng; Richard M. R. Coulson; Brendan S. Crabb; Hernando A. del Portillo; Kobby Essien; Tamara V. Feldblyum; Carmen Fernandez-Becerra; Paul R. Gilson; Amy H. Gueye; Xiang Guo; Simon Kang’a; Taco W. A. Kooij; Michael L. J. Korsinczky; Esmeralda V. S. Meyer; Vish Nene; Ian T. Paulsen; Owen White; Stuart A. Ralph; Qinghu Ren; Tobias Sargeant
The human malaria parasite Plasmodium vivax is responsible for 25–40% of the ∼515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.
Nature Biotechnology | 2010
Agnes P. Chan; Jonathan Crabtree; Qi Zhao; Hernan Lorenzi; Joshua Orvis; Daniela Puiu; Admasu Melake-Berhan; Kristine M Jones; Julia C. Redman; Grace Q. Chen; Edgar B. Cahoon; Melaku Gedil; Mario Stanke; Brian J. Haas; Jennifer R. Wortman; Claire M. Fraser-Liggett; Jacques Ravel; Pablo D. Rabinowicz
Castor bean (Ricinus communis) is an oilseed crop that belongs to the spurge (Euphorbiaceae) family, which comprises ∼6,300 species that include cassava (Manihot esculenta), rubber tree (Hevea brasiliensis) and physic nut (Jatropha curcas). It is primarily of economic interest as a source of castor oil, used for the production of high-quality lubricants because of its high proportion of the unusual fatty acid ricinoleic acid. However, castor bean genomics is also relevant to biosecurity as the seeds contain high levels of ricin, a highly toxic, ribosome-inactivating protein. Here we report the draft genome sequence of castor bean (4.6-fold coverage), the first for a member of the Euphorbiaceae. Whereas most of the key genes involved in oil synthesis and turnover are single copy, the number of members of the ricin gene family is larger than previously thought. Comparative genomics analysis suggests the presence of an ancient hexaploidization event that is conserved across the dicotyledonous lineage.Castor bean (Ricinus communis) is an oil crop that belongs to the spurge (Euphorbiaceae) family. Its seeds are the source of castor oil, used for the production of high-quality lubricants due to its high proportion of the unusual fatty acid ricinoleic acid. Castor bean seeds also produce ricin, a highly toxic ribosome inactivating protein, making castor bean relevant for biosafety. We report here the 4.6X draft genome sequence of castor bean, representing the first reported Euphorbiaceae genome sequence. Our analysis shows that most key castor oil metabolism genes are single-copy while the ricin gene family is larger than previously thought. Comparative genomics analysis suggests the presence of an ancient hexaploidization event that is conserved across the dicotyledonous lineage.
PLOS ONE | 2012
Shannon J. Williamson; Lisa Zeigler Allen; Hernan Lorenzi; Douglas W. Fadrosh; Daniel Brami; Mathangi Thiagarajan; John P. McCrow; Andrey Tovchigrechko; Shibu Yooseph; J. Craig Venter
The characterization of global marine microbial taxonomic and functional diversity is a primary goal of the Global Ocean Sampling Expedition. As part of this study, 19 water samples were collected aboard the Sorcerer II sailing vessel from the southern Indian Ocean in an effort to more thoroughly understand the lifestyle strategies of the microbial inhabitants of this ultra-oligotrophic region. No investigations of whole virioplankton assemblages have been conducted on waters collected from the Indian Ocean or across multiple size fractions thus far. Therefore, the goals of this study were to examine the effect of size fractionation on viral consortia structure and function and understand the diversity and functional potential of the Indian Ocean virome. Five samples were selected for comprehensive metagenomic exploration; and sequencing was performed on the microbes captured on 3.0-, 0.8- and 0.1 µm membrane filters as well as the viral fraction (<0.1 µm). Phylogenetic approaches were also used to identify predicted proteins of viral origin in the larger fractions of data from all Indian Ocean samples, which were included in subsequent metagenomic analyses. Taxonomic profiling of viral sequences suggested that size fractionation of marine microbial communities enriches for specific groups of viruses within the different size classes and functional characterization further substantiated this observation. Functional analyses also revealed a relative enrichment for metabolic proteins of viral origin that potentially reflect the physiological condition of host cells in the Indian Ocean including those involved in nitrogen metabolism and oxidative phosphorylation. A novel classification method, MGTAXA, was used to assess virus-host relationships in the Indian Ocean by predicting the taxonomy of putative host genera, with Prochlorococcus, Acanthochlois and members of the SAR86 cluster comprising the most abundant predictions. This is the first study to holistically explore virioplankton dynamics across multiple size classes and provides unprecedented insight into virus diversity, metabolic potential and virus-host interactions.
PLOS Neglected Tropical Diseases | 2010
Hernan Lorenzi; Daniela Puiu; Jason R. Miller; Lauren M. Brinkac; Paolo Amedeo; Neil Hall; Elisabet Caler
Background In order to maintain genome information accurately and relevantly, original genome annotations need to be updated and evaluated regularly. Manual reannotation of genomes is important as it can significantly reduce the propagation of errors and consequently diminishes the time spent on mistaken research. For this reason, after five years from the initial submission of the Entamoeba histolytica draft genome publication, we have re-examined the original 23 Mb assembly and the annotation of the predicted genes. Principal Findings The evaluation of the genomic sequence led to the identification of more than one hundred artifactual tandem duplications that were eliminated by re-assembling the genome. The reannotation was done using a combination of manual and automated genome analysis. The new 20 Mb assembly contains 1,496 scaffolds and 8,201 predicted genes, of which 60% are identical to the initial annotation and the remaining 40% underwent structural changes. Functional classification of 60% of the genes was modified based on recent sequence comparisons and new experimental data. We have assigned putative function to 3,788 proteins (46% of the predicted proteome) based on the annotation of predicted gene families, and have identified 58 protein families of five or more members that share no homology with known proteins and thus could be entamoeba specific. Genome analysis also revealed new features such as the presence of segmental duplications of up to 16 kb flanked by inverted repeats, and the tight association of some gene families with transposable elements. Significance This new genome annotation and analysis represents a more refined and accurate blueprint of the pathogen genome, and provides an upgraded tool as reference for the study of many important aspects of E. histolytica biology, such as genome evolution and pathogenesis.
Nature Communications | 2016
Hernan Lorenzi; Asis Khan; Michael S. Behnke; Sivaranjani Namasivayam; Lakshmipuram S. Swapna; Michalis Hadjithomas; Svetlana Karamycheva; Deborah F. Pinney; Brian P. Brunk; James W. Ajioka; Daniel Ajzenberg; John C. Boothroyd; Jon P. Boyle; Marie Laure Dardé; Maria A. Diaz-Miranda; J. P. Dubey; Heather M. Fritz; Solange Maria Gennari; Brian D. Gregory; Kami Kim; Jeroen Saeij; C. Su; Michael W. White; Xing Quan Zhu; Daniel K. Howe; Benjamin M. Rosenthal; Michael E. Grigg; John Parkinson; Liang Liu; Jessica C. Kissinger
Toxoplasma gondii is among the most prevalent parasites worldwide, infecting many wild and domestic animals and causing zoonotic infections in humans. T. gondii differs substantially in its broad distribution from closely related parasites that typically have narrow, specialized host ranges. To elucidate the genetic basis for these differences, we compared the genomes of 62 globally distributed T. gondii isolates to several closely related coccidian parasites. Our findings reveal that tandem amplification and diversification of secretory pathogenesis determinants is the primary feature that distinguishes the closely related genomes of these biologically diverse parasites. We further show that the unusual population structure of T. gondii is characterized by clade-specific inheritance of large conserved haploblocks that are significantly enriched in tandemly clustered secretory pathogenesis determinants. The shared inheritance of these conserved haploblocks, which show a different ancestry than the genome as a whole, may thus influence transmission, host range and pathogenicity.
BMC Genomics | 2008
Hernan Lorenzi; Mathangi Thiagarajan; Brian J. Haas; Jennifer R. Wortman; Neil Hall; Elisabet Caler
BackgroundIdentification and mapping of repetitive elements is a key step for accurate gene prediction and overall structural annotation of genomes. During the assembly and annotation of three highly repetitive amoeba genomes, Entamoeba histolytica, Entamoeba dispar, and Entamoeba invadens, we performed comparative sequence analysis to identify and map all class I and class II transposable elements in their sequences.ResultsHere, we report the identification of two novel Entamoeba-specific repeats: ERE1 and ERE2; ERE1 is spread across the three genomes and associated with different repeats in a species-specific manner, while ERE2 is unique to E. histolytica. We also report the identification of two novel subfamilies of LINE and SINE retrotransposons in E. dispar and provide evidence for how the different LINE and SINE subfamilies evolved in these species. Additionally, we found a putative transposase-coding gene in E. histolytica and E. dispar related to the mariner transposon Hydargos from E. invadens. The distribution of transposable elements in these genomes is markedly skewed with a tendency of forming clusters. More than 70% of the three genomes have a repeat density below their corresponding average value indicating that transposable elements are not evenly distributed. We show that repeats and repeat-clusters are found at syntenic break points between E. histolytica and E. dispar and hence, could work as recombination hot spots promoting genome rearrangements.ConclusionThe mapping of all transposable elements found in these parasites shows that repeat coverage is up to three times higher than previously reported. LINE, ERE1 and mariner elements were present in the common ancestor to the three Entamoeba species while ERE2 was likely acquired by E. histolytica after its separation from E. dispar. We demonstrate that E. histolytica and E. dispar share their entire repertoire of LINE and SINE retrotransposons and that Eh_SINE3/Ed_SINE1 originated as a chimeric SINE from Eh/Ed_SINE2 and Eh_SINE1/Ed_SINE3. Our work shows that transposable elements are organized in clusters, frequently found at syntenic break points providing insights into their contribution to chromosome instability and therefore, to genomic variation and speciation in these parasites.
Genome Biology | 2013
Gretchen M. Ehrenkaufer; Gareth D. Weedall; Daryl R. Williams; Hernan Lorenzi; Elisabet Caler; Neil Hall; Upinder Singh
BackgroundSeveral eukaryotic parasites form cysts that transmit infection. The process is found in diverse organisms such as Toxoplasma, Giardia, and nematodes. In Entamoeba histolytica this process cannot be induced in vitro, making it difficult to study. In Entamoeba invadens, stage conversion can be induced, but its utility as a model system to study developmental biology has been limited by a lack of genomic resources. We carried out genome and transcriptome sequencing of E. invadens to identify molecular processes involved in stage conversion.ResultsWe report the sequencing and assembly of the E. invadens genome and use whole transcriptome sequencing to characterize changes in gene expression during encystation and excystation. The E. invadens genome is larger than that of E. histolytica, apparently largely due to expansion of intergenic regions; overall gene number and the machinery for gene regulation are conserved between the species. Over half the genes are regulated during the switch between morphological forms and a key signaling molecule, phospholipase D, appears to regulate encystation. We provide evidence for the occurrence of meiosis during encystation, suggesting that stage conversion may play a key role in recombination between strains.ConclusionsOur analysis demonstrates that a number of core processes are common to encystation between distantly related parasites, including meiosis, lipid signaling and RNA modification. These data provide a foundation for understanding the developmental cascade in the important human pathogen E. histolytica and highlight conserved processes more widely relevant in enteric pathogens.
Gene | 2003
Hernan Lorenzi; Martin P. Vazquez; Mariano J. Levin
The expression vectors of the protozoan parasite Trypanosoma cruzi pRIBOTEX and pTREX harbor a ribosomal promoter that improves gene expression and clone selection. Interestingly, the solely presence of this 810 bp long sequence leads to the integration of these vectors into the ribosomal locus, even though circular plasmids are poorly recombinogenic. Initially, it was suggested that a 174 bp long ribosomal-specific repeat element present in the ribosomal promoter region could be responsible for the genetic exchange. On the contrary, we demonstrate that recombination of pTREX occurs within a 86 bp long region located 120 bp downstream the transcription start point (tsp1) of the ribosomal promoter, and it does not depend on the presence of the ribosomal repeat. We also determined that a 291 bp segment encompassing the tsp1 and the 86 bp long recombination region contains all necessary signals to drive transcription and complete recombination into the rRNA locus. Finally, we demonstrate that the integration of pTREX derived plasmids into the nuclear genome occurs within the first 5 h post-transfection, and that non-integrated copies are rapidly degraded.
Standards in Genomic Sciences | 2011
Hernan Lorenzi; Jeff Hoover; Jason M. Inman; Todd Safford; Sean Murphy; Leonid Kagan; Shannon J. Williamson
In the past few years, the field of metagenomics has been growing at an accelerated pace, particularly in response to advancements in new sequencing technologies. The large volume of sequence data from novel organisms generated by metagenomic projects has triggered the development of specialized databases and tools focused on particular groups of organisms or data types. Here we describe a pipeline for the functional annotation of viral metagenomic sequence data. The Viral MetaGenome Annotation Pipeline (VMGAP) pipeline takes advantage of a number of specialized databases, such as collections of mobile genetic elements and environmental metagenomes to improve the classification and functional prediction of viral gene products. The pipeline assigns a functional term to each predicted protein sequence following a suite of comprehensive analyses whose results are ranked according to a priority rules hierarchy. Additional annotation is provided in the form of enzyme commission (EC) numbers, GO/MeGO terms and Hidden Markov Models together with supporting evidence.
PLOS ONE | 2015
Michael E. Bose; Jie He; Susmita Shrivastava; Martha I. Nelson; Jayati Bera; Rebecca A. Halpin; Christopher D. Town; Hernan Lorenzi; Daniel E. Noyola; Valeria Falcone; Giuseppe Gerna; Hans De Beenhouwer; Cristina Videla; Tuckweng Kok; Marietjie Venter; John V. Williams; Kelly J. Henrickson
Background Human respiratory syncytial virus (RSV) is the leading cause of respiratory tract infections in children globally, with nearly all children experiencing at least one infection by the age of two. Partial sequencing of the attachment glycoprotein gene is conducted routinely for genotyping, but relatively few whole genome sequences are available for RSV. The goal of our study was to sequence the genomes of RSV strains collected from multiple countries to further understand the global diversity of RSV at a whole-genome level. Methods We collected RSV samples and isolates from Mexico, Argentina, Belgium, Italy, Germany, Australia, South Africa, and the USA from the years 1998-2010. Both Sanger and next-generation sequencing with the Illumina and 454 platforms were used to sequence the whole genomes of RSV A and B. Phylogenetic analyses were performed using the Bayesian and maximum likelihood methods of phylogenetic inference. Results We sequenced the genomes of 34 RSVA and 23 RSVB viruses. Phylogenetic analysis showed that the RSVA genome evolves at an estimated rate of 6.72 × 10-4 substitutions/site/year (95% HPD 5.61 × 10-4 to 7.6 × 10-4) and for RSVB the evolutionary rate was 7.69 × 10-4 substitutions/site/year (95% HPD 6.81 × 10-4 to 8.62 × 10-4). We found multiple clades co-circulating globally for both RSV A and B. The predominant clades were GA2 and GA5 for RSVA and BA for RSVB. Conclusions Our analyses showed that RSV circulates on a global scale with the same predominant clades of viruses being found in countries around the world. However, the distribution of clades can change rapidly as new strains emerge. We did not observe a strong spatial structure in our trees, with the same three main clades of RSV co-circulating globally, suggesting that the evolution of RSV is not strongly regionalized.