Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathangi Thiagarajan is active.

Publication


Featured researches published by Mathangi Thiagarajan.


Methods in Enzymology | 2006

9) TM4 Microarray Software Suite

Alexander I. Saeed; Nirmal K. Bhagabati; John C. Braisted; Wei Liang; Vasily Sharov; Eleanor A. Howe; Jianwei Li; Mathangi Thiagarajan; Joseph White; John Quackenbush

Powerful specialized software is essential for managing, quantifying, and ultimately deriving scientific insight from results of a microarray experiment. We have developed a suite of software applications, known as TM4, to support such gene expression studies. The suite consists of open‐source tools for data managementandreporting,imageanalysis,normalizationandpipelinecontrol, and data mining and visualization. An integrated MIAME‐compliant MySQL database is included. This chapter describes each component of the suite and includes a sample analysis walk‐through.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton

Marie L. Cuvelier; Andrew E. Allen; Adam Monier; John P. McCrow; Monique Messié; Susannah G. Tringe; Tanja Woyke; Rory M. Welsh; Thomas Ishoey; Jae-Hyeok Lee; Brian J. Binder; Chris L. Dupont; Mikel Latasa; Cedric M. Guigand; Kurt R. Buck; Jason Hilton; Mathangi Thiagarajan; Elisabet Caler; Betsy A. Read; Roger S. Lasken; Francisco P. Chavez; Alexandra Z. Worden

Among eukaryotes, four major phytoplankton lineages are responsible for marine photosynthesis; prymnesiophytes, alveolates, stramenopiles, and prasinophytes. Contributions by individual taxa, however, are not well known, and genomes have been analyzed from only the latter two lineages. Tiny “picoplanktonic” members of the prymnesiophyte lineage have long been inferred to be ecologically important but remain poorly characterized. Here, we examine pico-prymnesiophyte evolutionary history and ecology using cultivation-independent methods. 18S rRNA gene analysis showed pico-prymnesiophytes belonged to broadly distributed uncultivated taxa. Therefore, we used targeted metagenomics to analyze uncultured pico-prymnesiophytes sorted by flow cytometry from subtropical North Atlantic waters. The data reveal a composite nuclear-encoded gene repertoire with strong green-lineage affiliations, which contrasts with the evolutionary history indicated by the plastid genome. Measured pico-prymnesiophyte growth rates were rapid in this region, resulting in primary production contributions similar to the cyanobacterium Prochlorococcus. On average, pico-prymnesiophytes formed 25% of global picophytoplankton biomass, with differing contributions in five biogeographical provinces spanning tropical to subpolar systems. Elements likely contributing to success include high gene density and genes potentially involved in defense and nutrient uptake. Our findings have implications reaching beyond pico-prymnesiophytes, to the prasinophytes and stramenopiles. For example, prevalence of putative Ni-containing superoxide dismutases (SODs), instead of Fe-containing SODs, seems to be a common adaptation among eukaryotic phytoplankton for reducing Fe quotas in low-Fe modern oceans. Moreover, highly mosaic gene repertoires, although compositionally distinct for each major eukaryotic lineage, now seem to be an underlying facet of successful marine phytoplankton.


PLOS ONE | 2014

Functional tradeoffs underpin salinity-driven divergence in microbial community composition.

Chris L. Dupont; John Larsson; Shibu Yooseph; Karolina Ininbergs; Johannes Goll; Johannes Asplund-Samuelsson; John P. McCrow; Narin Celepli; Lisa Zeigler Allen; Martin Ekman; Andrew J. Lucas; Åke Hagström; Mathangi Thiagarajan; Björn Brindefalk; Alexander R. Richter; Anders F. Andersson; Aaron Tenney; Daniel Lundin; Andrey Tovchigrechko; Johan A. A. Nylander; Daniel Brami; Jonathan H. Badger; Andrew E. Allen; Douglas B. Rusch; Jeff Hoffman; Erling Norrby; Robert Friedman; Jarone Pinhassi; J. Craig Venter; Birgitta Bergman

Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.


Bioinformatics | 2010

METAREP: JCVI metagenomics reports—an open source tool for high-performance comparative metagenomics

Johannes Goll; Douglas B. Rusch; David M. Tanenbaum; Mathangi Thiagarajan; Kelvin Li; Barbara A. Methé; Shibu Yooseph

Summary: JCVI Metagenomics Reports (METAREP) is a Web 2.0 application designed to help scientists analyze and compare annotated metagenomics datasets. It utilizes Solr/Lucene, a high-performance scalable search engine, to quickly query large data collections. Furthermore, users can use its SQL-like query syntax to filter and refine datasets. METAREP provides graphical summaries for top taxonomic and functional classifications as well as a GO, NCBI Taxonomy and KEGG Pathway Browser. Users can compare absolute and relative counts of multiple datasets at various functional and taxonomic levels. Advanced comparative features comprise statistical tests as well as multidimensional scaling, heatmap and hierarchical clustering plots. Summaries can be exported as tab-delimited files, publication quality plots in PDF format. A data management layer allows collaborative data analysis and result sharing. Availability: Web site http://www.jcvi.org/metarep; source code http://github.com/jcvi/METAREP Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


BMC Genomics | 2008

Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative genomic hybridization, and targeted gap closure

Robert S. Coyne; Mathangi Thiagarajan; Kristie M. Jones; Jennifer R. Wortman; Luke J. Tallon; Brian J. Haas; Donna Cassidy-Hanley; Emily A. Wiley; Joshua J. Smith; Kathleen Collins; Suzanne R. Lee; Mary T. Couvillion; Yifan Liu; Jyoti Garg; Ronald E. Pearlman; Eileen P. Hamilton; Eduardo Orias; Jonathan A. Eisen; Barbara A. Methé

BackgroundTetrahymena thermophila, a widely studied model for cellular and molecular biology, is a binucleated single-celled organism with a germline micronucleus (MIC) and somatic macronucleus (MAC). The recent draft MAC genome assembly revealed low sequence repetitiveness, a result of the epigenetic removal of invasive DNA elements found only in the MIC genome. Such low repetitiveness makes complete closure of the MAC genome a feasible goal, which to achieve would require standard closure methods as well as removal of minor MIC contamination of the MAC genome assembly. Highly accurate preliminary annotation of Tetrahymenas coding potential was hindered by the lack of both comparative genomic sequence information from close relatives and significant amounts of cDNA evidence, thus limiting the value of the genomic information and also leaving unanswered certain questions, such as the frequency of alternative splicing.ResultsWe addressed the problem of MIC contamination using comparative genomic hybridization with purified MIC and MAC DNA probes against a whole genome oligonucleotide microarray, allowing the identification of 763 genome scaffolds likely to contain MIC-limited DNA sequences. We also employed standard genome closure methods to essentially finish over 60% of the MAC genome. For the improvement of annotation, we have sequenced and analyzed over 60,000 verified EST reads from a variety of cellular growth and development conditions. Using this EST evidence, a combination of automated and manual reannotation efforts led to updates that affect 16% of the current protein-coding gene models. By comparing EST abundance, many genes showing apparent differential expression between these conditions were identified. Rare instances of alternative splicing and uses of the non-standard amino acid selenocysteine were also identified.ConclusionWe report here significant progress in genome closure and reannotation of Tetrahymena thermophila. Our experience to date suggests that complete closure of the MAC genome is attainable. Using the new EST evidence, automated and manual curation has resulted in substantial improvements to the over 24,000 gene models, which will be valuable to researchers studying this model organism as well as for comparative genomics purposes.


PLOS ONE | 2012

Metagenomic exploration of viruses throughout the Indian Ocean.

Shannon J. Williamson; Lisa Zeigler Allen; Hernan Lorenzi; Douglas W. Fadrosh; Daniel Brami; Mathangi Thiagarajan; John P. McCrow; Andrey Tovchigrechko; Shibu Yooseph; J. Craig Venter

The characterization of global marine microbial taxonomic and functional diversity is a primary goal of the Global Ocean Sampling Expedition. As part of this study, 19 water samples were collected aboard the Sorcerer II sailing vessel from the southern Indian Ocean in an effort to more thoroughly understand the lifestyle strategies of the microbial inhabitants of this ultra-oligotrophic region. No investigations of whole virioplankton assemblages have been conducted on waters collected from the Indian Ocean or across multiple size fractions thus far. Therefore, the goals of this study were to examine the effect of size fractionation on viral consortia structure and function and understand the diversity and functional potential of the Indian Ocean virome. Five samples were selected for comprehensive metagenomic exploration; and sequencing was performed on the microbes captured on 3.0-, 0.8- and 0.1 µm membrane filters as well as the viral fraction (<0.1 µm). Phylogenetic approaches were also used to identify predicted proteins of viral origin in the larger fractions of data from all Indian Ocean samples, which were included in subsequent metagenomic analyses. Taxonomic profiling of viral sequences suggested that size fractionation of marine microbial communities enriches for specific groups of viruses within the different size classes and functional characterization further substantiated this observation. Functional analyses also revealed a relative enrichment for metabolic proteins of viral origin that potentially reflect the physiological condition of host cells in the Indian Ocean including those involved in nitrogen metabolism and oxidative phosphorylation. A novel classification method, MGTAXA, was used to assess virus-host relationships in the Indian Ocean by predicting the taxonomy of putative host genera, with Prochlorococcus, Acanthochlois and members of the SAR86 cluster comprising the most abundant predictions. This is the first study to holistically explore virioplankton dynamics across multiple size classes and provides unprecedented insight into virus diversity, metabolic potential and virus-host interactions.


The ISME Journal | 2012

Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic

Lisa Zeigler Allen; Eric E. Allen; Jonathan H. Badger; John P. McCrow; Ian T. Paulsen; Liam D. H. Elbourne; Mathangi Thiagarajan; Doug Rusch; Kenneth H. Nealson; Shannon J. Williamson; J. Craig Venter; Andrew E. Allen

Metagenomic data sets were generated from samples collected along a coastal to open ocean transect between Southern California Bight and California Current waters during a seasonal upwelling event, providing an opportunity to examine the impact of episodic pulses of cold nutrient-rich water into surface ocean microbial communities. The data set consists of ∼5.8 million predicted proteins across seven sites, from three different size classes: 0.1–0.8, 0.8–3.0 and 3.0–200.0 μm. Taxonomic and metabolic analyses suggest that sequences from the 0.1–0.8 μm size class correlated with their position along the upwelling mosaic. However, taxonomic profiles of bacteria from the larger size classes (0.8–200 μm) were less constrained by habitat and characterized by an increase in Cyanobacteria, Bacteroidetes, Flavobacteria and double-stranded DNA viral sequences. Functional annotation of transmembrane proteins indicate that sites comprised of organisms with small genomes have an enrichment of transporters with substrate specificities for amino acids, iron and cadmium, whereas organisms with larger genomes have a higher percentage of transporters for ammonium and potassium. Eukaryotic-type glutamine synthetase (GS) II proteins were identified and taxonomically classified as viral, most closely related to the GSII in Mimivirus, suggesting that marine Mimivirus-like particles may have played a role in the transfer of GSII gene functions. Additionally, a Planctomycete bloom was sampled from one upwelling site providing a rare opportunity to assess the genomic composition of a marine Planctomycete population. The significant correlations observed between genomic properties, community structure and nutrient availability provide insights into habitat-driven dynamics among oligotrophic versus upwelled marine waters adjoining each other spatially.


Standards in Genomic Sciences | 2010

The JCVI standard operating procedure for annotating prokaryotic metagenomic shotgun sequencing data

David M. Tanenbaum; Johannes Goll; Sean Murphy; Prateek Kumar; Nikhat Zafar; Mathangi Thiagarajan; Ramana Madupu; Tanja Davidsen; Leonid Kagan; Saul Kravitz; Douglas B. Rusch; Shibu Yooseph

The JCVI metagenomics analysis pipeline provides for the efficient and consistent annotation of shotgun metagenomics sequencing data for sampling communities of prokaryotic organisms. The process can be equally applied to individual sequence reads from traditional Sanger capillary electrophoresis sequences, newer technologies such as 454 pyrosequencing, or sequence assemblies derived from one or more of these data types. It includes the analysis of both coding and non-coding genes, whether full-length or, as is often the case for shotgun metagenomics, fragmentary. The system is designed to provide the best-supported conservative functional annotation based on a combination of trusted homology-based scientific evidence and computational assertions and an annotation value hierarchy established through extensive manual curation. The functional annotation attributes assigned by this system include gene name, gene symbol, GO terms [1], EC numbers [2], and JCVI functional role categories [3].


BMC Genomics | 2012

Comparative genomic analysis and phylogenetic position of Theileria equi

Lowell S. Kappmeyer; Mathangi Thiagarajan; David R. Herndon; Joshua D. Ramsay; Elisabet Caler; Appolinaire Djikeng; Joseph J. Gillespie; Audrey O.T. Lau; Eric H. Roalson; Joana C. Silva; Marta G. Silva; Carlos E. Suarez; Massaro W. Ueti; Vishvanath Nene; Robert H. Mealey; Donald P. Knowles; Kelly A. Brayton

BackgroundTransmission of arthropod-borne apicomplexan parasites that cause disease and result in death or persistent infection represents a major challenge to global human and animal health. First described in 1901 as Piroplasma equi, this re-emergent apicomplexan parasite was renamed Babesia equi and subsequently Theileria equi, reflecting an uncertain taxonomy. Understanding mechanisms by which apicomplexan parasites evade immune or chemotherapeutic elimination is required for development of effective vaccines or chemotherapeutics. The continued risk of transmission of T. equi from clinically silent, persistently infected equids impedes the goal of returning the U. S. to non-endemic status. Therefore comparative genomic analysis of T. equi was undertaken to: 1) identify genes contributing to immune evasion and persistence in equid hosts, 2) identify genes involved in PBMC infection biology and 3) define the phylogenetic position of T. equi relative to sequenced apicomplexan parasites.ResultsThe known immunodominant proteins, EMA1, 2 and 3 were discovered to belong to a ten member gene family with a mean amino acid identity, in pairwise comparisons, of 39%. Importantly, the amino acid diversity of EMAs is distributed throughout the length of the proteins. Eight of the EMA genes were simultaneously transcribed. As the agents that cause bovine theileriosis infect and transform host cell PBMCs, we confirmed that T. equi infects equine PBMCs, however, there is no evidence of host cell transformation. Indeed, a number of genes identified as potential manipulators of the host cell phenotype are absent from the T. equi genome. Comparative genomic analysis of T. equi revealed the phylogenetic positioning relative to seven apicomplexan parasites using deduced amino acid sequences from 150 genes placed it as a sister taxon to Theileria spp.ConclusionsThe EMA family does not fit the paradigm for classical antigenic variation, and we propose a novel model describing the role of the EMA family in persistence. T. equi has lost the putative genes for host cell transformation, or the genes were acquired by T. parva and T. annulata after divergence from T. equi. Our analysis identified 50 genes that will be useful for definitive phylogenetic classification of T. equi and closely related organisms.


Nature Genetics | 2006

Physiogenomic resources for rat models of heart, lung and blood disorders

Renae L. Malek; Hong Ying Wang; Anne E. Kwitek; Andrew S. Greene; Nirmal K. Bhagabati; Gretta Borchardt; Lisa Cahill; Tracey Currier; Bryan Frank; Xianping Fu; Michael Hasinoff; Eleanor A. Howe; Noah Letwin; Truong Luu; Alexander I. Saeed; Hedieh Sajadi; Razvan Sultana; Mathangi Thiagarajan; Jennifer Tsai; Kathleen Veratti; Joseph White; John Quackenbush; Howard J. Jacob; Norman H. Lee

Cardiovascular disorders are influenced by genetic and environmental factors. The TIGR rodent expression web-based resource (TREX) contains over 2,200 microarray hybridizations, involving over 800 animals from 18 different rat strains. These strains comprise genetically diverse parental animals and a panel of chromosomal substitution strains derived by introgressing individual chromosomes from normotensive Brown Norway (BN/NHsdMcwi) rats into the background of Dahl salt sensitive (SS/JrHsdMcwi) rats. The profiles document gene-expression changes in both genders, four tissues (heart, lung, liver, kidney) and two environmental conditions (normoxia, hypoxia). This translates into almost 400 high-quality direct comparisons (not including replicates) and over 100,000 pairwise comparisons. As each individual chromosomal substitution strain represents on average less than a 5% change from the parental genome, consomic strains provide a useful mechanism to dissect complex traits and identify causative genes. We performed a variety of data-mining manipulations on the profiles and used complementary physiological data from the PhysGen resource to demonstrate how TREX can be used by the cardiovascular community for hypothesis generation.

Collaboration


Dive into the Mathangi Thiagarajan's collaboration.

Top Co-Authors

Avatar

Shibu Yooseph

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Johannes Goll

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Elisabet Caler

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

J. Craig Venter

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Andrew E. Allen

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Brami

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Hernan Lorenzi

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge