Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hernán R. Bonomi is active.

Publication


Featured researches published by Hernán R. Bonomi.


Microbiology | 2011

The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development.

Florencia Malamud; Pablo Torres; Roxana Andrea Roeschlin; Luciano A. Rigano; Ramón Enrique; Hernán R. Bonomi; Atilio Pedro Castagnaro; María Rosa Marano; Adrián A. Vojnov

Xanthomonas axonopodis pv. citri (Xac) is the causative agent of citrus canker. This bacterium develops a characteristic biofilm on both biotic and abiotic surfaces. To evaluate the participation of the single flagellum of Xac in biofilm formation, mutants in the fliC (flagellin) and the flgE (hook) genes were generated. Swimming motility, assessed on 0.25 % agar plates, was markedly reduced in fliC and flgE mutants. However, the fliC and flgE mutants exhibited a flagellar-independent surface translocation on 0.5 % agar plates. Mutation of either the rpfF or the rpfC gene, which both encode proteins involved in cell-cell signalling mediated by diffusible signal factor (DSF), led to a reduction in both flagellar-dependent and flagellar-independent surface translocation, indicating a regulatory role for DSF in both types of motility. Confocal laser scanning microscopy of biofilms produced in static culture demonstrated that the flagellum is also involved in the formation of mushroom-shaped structures and water channels, and in the dispersion of biofilms. The presence of the flagellum was required for mature biofilm development on lemon leaf surfaces. The absence of flagellin produced a slight reduction in Xac pathogenicity and this reduction was more severe when the complete flagellum structure was absent.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor

Hernán R. Bonomi; Diana M. Posadas; Gastón Paris; Mariela del Carmen Carrica; Marcus A. Frederickson; Lía I. Pietrasanta; Roberto A. Bogomolni; Angeles Zorreguieta; Fernando A. Goldbaum

Rhizobium leguminosarum is a soil bacterium that infects root hairs and induces the formation of nitrogen-fixing nodules on leguminous plants. Light, oxygen, and voltage (LOV)-domain proteins are blue-light receptors found in higher plants and many algae, fungi, and bacteria. The genome of R. leguminosarum bv. viciae 3841, a pea-nodulating endosymbiont, encodes a sensor histidine kinase containing a LOV domain at the N-terminal end (R-LOV-HK). R-LOV-HK has a typical LOV domain absorption spectrum with broad bands in the blue and UV-A regions and shows a truncated photocycle. Here we show that the R-LOV-HK protein regulates attachment to an abiotic surface and production of flagellar proteins and exopolysaccharide in response to light. Also, illumination of bacterial cultures before inoculation of pea roots increases the number of nodules per plant and the number of intranodular bacteroids. The effects of light on nodulation are dependent on a functional lov gene. The results presented in this work suggest that light, sensed by R-LOV-HK, is an important environmental factor that controls adaptive responses and the symbiotic efficiency of R. leguminosarum.


PLOS ONE | 2015

Extensive Identification of Bacterial Riboflavin Transporters and Their Distribution across Bacterial Species

Ana Gutiérrez-Preciado; Alfredo G. Torres; Enrique Merino; Hernán R. Bonomi; Fernando A. Goldbaum; Victor A. Garcia-Angulo

Riboflavin, the precursor for the cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide, is an essential metabolite in all organisms. While the functions for de novo riboflavin biosynthesis and riboflavin import may coexist in bacteria, the extent of this co-occurrence is undetermined. The RibM, RibN, RfuABCD and the energy-coupling factor-RibU bacterial riboflavin transporters have been experimentally characterized. In addition, ImpX, RfnT and RibXY are proposed as riboflavin transporters based on positional clustering with riboflavin biosynthetic pathway (RBP) genes or conservation of the FMN riboswitch regulatory element. Here, we searched for the FMN riboswitch in bacterial genomes to identify genes encoding riboflavin transporters and assessed their distribution among bacteria. Two new putative riboflavin transporters were identified: RibZ in Clostridium and RibV in Mesoplasma florum. Trans-complementation of an Escherichia coli riboflavin auxotroph strain confirmed the riboflavin transport activity of RibZ from Clostridium difficile, RibXY from Chloroflexus aurantiacus, ImpX from Fusobacterium nucleatum and RfnT from Ochrobactrum anthropi. The analysis of the genomic distribution of all known bacterial riboflavin transporters revealed that most occur in species possessing the RBP and that some bacteria may even encode functional riboflavin transporters from two different families. Our results indicate that some species possess ancestral riboflavin transporters, while others possess transporters that appear to have evolved recently. Moreover, our data suggest that unidentified riboflavin transporters also exist. The present study doubles the number of experimentally characterized riboflavin transporters and suggests a specific, non-accessory role for these proteins in riboflavin-prototrophic bacteria.


PLOS ONE | 2010

An Atypical Riboflavin Pathway Is Essential for Brucella abortus Virulence

Hernán R. Bonomi; María Inés Marchesini; Sebastián Klinke; Juan E. Ugalde; Vanesa Zylberman; Rodolfo A. Ugalde; Diego J. Comerci; Fernando A. Goldbaum

Brucellosis is a worldwide zoonosis that affects livestock and humans and is caused by closely related Brucella spp., which are adapted to intracellular life within cells of a large variety of mammals. Brucella can be considered a furtive pathogen that infects professional and non-professional phagocytes. In these cells Brucella survives in a replicative niche, which is characterized for having a very low oxygen tension and being deprived from nutrients such as amino acids and vitamins. Among these vitamins, we have focused on riboflavin (vitamin B2). Flavin metabolism has been barely implicated in bacterial virulence. We have recently described that Brucella and other Rhizobiales bear an atypical riboflavin metabolic pathway. In the present work we analyze the role of the flavin metabolism on Brucella virulence. Mutants on the two lumazine synthases (LS) isoenzymes RibH1 and RibH2 and a double RibH mutant were generated. These mutants and different complemented strains were tested for viability and virulence in cells and in mice. In this fashion we have established that at least one LS must be present for B. abortus survival and that RibH2 and not RibH1 is essential for intracellular survival due to its LS activity in vivo. In summary, we show that riboflavin biosynthesis is essential for Brucella survival inside cells or in mice. These results highlight the potential use of flavin biosynthetic pathway enzymes as targets for the chemotherapy of brucellosis.


Journal of Molecular Biology | 2016

Structure of the Full-Length Bacteriophytochrome from the Plant Pathogen Xanthomonas campestris Provides Clues to its Long-Range Signaling Mechanism

Lisandro H. Otero; Sebastián Klinke; Jimena Rinaldi; Francisco Velázquez-Escobar; Maria Andrea Mroginski; María Fernández López; Florencia Malamud; Adrián A. Vojnov; Peter Hildebrandt; Fernando A. Goldbaum; Hernán R. Bonomi

Phytochromes constitute a major superfamily of light-sensing proteins that are reversibly photoconverted between a red-absorbing (Pr) and a far-red-absorbing (Pfr) state. Bacteriophytochromes (BphPs) are found among photosynthetic and non-photosynthetic bacteria, including pathogens. To date, several BphPs have been biophysically characterized. However, it is still not fully understood how structural changes are propagated from the photosensory module to the output module during the signal transduction event. Most phytochromes share a common architecture consisting of an N-terminal photosensor that includes the PAS2-GAF-PHY domain triad and a C-terminal variable output module. Here we present the crystal structure of the full-length BphP from the plant pathogen Xanthomonas campestris pv. campestris (XccBphP) bearing its photosensor and its complete output module, a PAS9 domain. In the crystals, the protein was found to be in the Pr state, whereas diffraction data together with resonance Raman spectroscopic and theoretical results indicate a ZZZssa and a ZZEssa chromophore configuration corresponding to a mixture of Pr and Meta-R state, the precursor of Pfr. The XccBphP quaternary assembly reveals a head-to-head dimer in which the output module contributes to the helical dimer interface. The photosensor, which is shown to be a bathy-like BphP, is influenced in its dark reactions by the output module. Our structural analyses suggest that the photoconversion between the Pr and Pfr states in the full-length XccBphP may involve changes in the relative positioning of the output module. This work contributes to understand the light-induced structural changes propagated from the photosensor to the output modules in phytochrome signaling.


Journal of Bacteriology | 2013

Identification and Characterization of RibN, a Novel Family of Riboflavin Transporters from Rhizobium leguminosarum and Other Proteobacteria

Víctor A. García Angulo; Hernán R. Bonomi; Diana M. Posadas; María I. Serer; Alfredo G. Torres; Angeles Zorreguieta; Fernando A. Goldbaum

Rhizobia are symbiotic bacteria able to invade and colonize the roots of legume plants, inducing the formation of nodules, where bacteria reduce atmospheric nitrogen (N2) to ammonia (NH3). Riboflavin availability influences the capacity of rhizobia to survive in the rhizosphere and to colonize roots. In this study, we identified the RL1692 gene of Rhizobium leguminosarum downstream of a flavin mononucleotide (FMN) riboswitch. RL1692 encodes a putative transmembrane permease with two EamA domains. The presence of an FMN riboswitch regulating a transmembrane protein is usually observed in riboflavin transporters, suggesting that RL1692 may be involved in riboflavin uptake. The product of RL1692, which we named RibN, is conserved in members of the alpha-, beta-, and gammaproteobacteria and shares no significant identity with any riboflavin transporter previously identified. In this work, we show that RibN is localized in the membrane cellular fraction and its expression is downregulated by riboflavin. By heterologous expression in a Brucella abortus mutant auxotrophic for riboflavin, we demonstrate that RibN possesses flavin transport activity. Similarly, we also demonstrate that RibN orthologues from Ochrobactrum anthropi and Vibrio cholerae (which lacks the FMN riboswitch) are able to transport riboflavin. An R. leguminosarum ribN null mutant exhibited lower nodule occupancy levels in pea plants during symbiosis assays. Thus, we propose that RibN and its homologues belong to a novel family of riboflavin transporters. This work provides the first experimental description of riboflavin transporters in Gram-negative bacteria.


Journal of Molecular Biology | 2012

The β-scaffold of the LOV domain of the Brucella light-activated histidine kinase is a key element for signal transduction.

Jimena Rinaldi; Mariana Gallo; Sebastián Klinke; Gastón Paris; Hernán R. Bonomi; Roberto A. Bogomolni; Daniel O. Cicero; Fernando A. Goldbaum

Light-oxygen-voltage (LOV) domains are blue-light-activated signaling modules present in a wide range of sensory proteins. Among them, the histidine kinases are the largest group in prokaryotes (LOV-HK). Light modulates the virulence of the pathogenic bacteria Brucella abortus through LOV-HK. One of the striking characteristic of Brucella LOV-HK is the fact that the protein remains activated upon light sensing, without recovering the basal state in the darkness. In contrast, the light state of the isolated LOV domain slowly returns to the dark state. To gain insight into the light activation mechanism, we have characterized by X-ray crystallography and solution NMR spectroscopy the structure of the LOV domain of LOV-HK in the dark state and explored its light-induced conformational changes. The LOV domain adopts the α/β PAS (PER-ARNT-SIM) domain fold and binds the FMN cofactor within a conserved pocket. The domain dimerizes through the hydrophobic β-scaffold in an antiparallel way. Our results point to the β-scaffold as a key element in the light activation, validating a conserved structural basis for light-to-signal propagation in LOV proteins.


EMBO Reports | 2016

Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor

Hernán R. Bonomi; Laila Toum; Gabriela Sycz; Rodrigo Sieira; Andrés Martín Toscani; Gustavo Eduardo Gudesblat; Federico Coluccio Leskow; Fernando A. Goldbaum; Adrián A. Vojnov; Florencia Malamud

Phytochromes constitute a major photoreceptor family found in plants, algae, fungi, and prokaryotes, including pathogens. Here, we report that Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot disease which affects cruciferous crops worldwide, codes for a functional bacteriophytochrome (XccBphP). XccBphP possesses an N‐terminal PAS2‐GAF‐PHY photosensory domain triad and a C‐terminal PAS9 domain as its output module. Our results show that illumination of Xcc, prior to plant infection, attenuates its virulence in an XccBphP‐dependent manner. Moreover, in response to light, XccBphP downregulates xanthan exopolysaccharide production and biofilm formation, two known Xcc virulence factors. Furthermore, the XccbphP null mutant shows enhanced virulence, similar to that of dark‐adapted Xcc cultures. Stomatal aperture regulation and callose deposition, both well‐established plant defense mechanisms against bacterial pathogens, are overridden by the XccbphP strain. Additionally, an RNA‐Seq analysis reveals that far‐red light or XccBphP overexpression produces genomewide transcriptional changes, including the inhibition of several Xcc virulence systems. Our findings indicate that Xcc senses light through XccBphP, eliciting bacterial virulence attenuation via downregulation of bacterial virulence factors. The capacity of XccBphP to respond to light both in vitro and in vivo was abolished by a mutation on the conserved Cys13 residue. These results provide evidence for a novel bacteriophytochrome function affecting an infectious process.


PLOS ONE | 2015

Brucella spp. Lumazine Synthase Induces a TLR4-Mediated Protective Response against B16 Melanoma in Mice

Andrés Hugo Rossi; Ana Luzia Ferreira Farias; Javier E. Fernandez; Hernán R. Bonomi; Fernando A. Goldbaum; Paula M. Berguer

Brucella Lumazine Synthase (BLS) is a highly immunogenic decameric protein which can accept the fusion of foreign proteins at its ten N-termini. These chimeras are very efficient to elicit systemic and oral immunity without adjuvants. BLS signaling via Toll-Like Receptor 4 (TLR4) regulates innate and adaptive immune responses, inducing dendritic cell maturation and CD8+ T-cell cytotoxicity. In this work we study the effect induced by BLS in TLR4-expressing B16 melanoma. In order to evaluate the effectiveness of BLS as a preventive vaccine, C57BL/6J mice were immunized with BLS or BLS-OVA, and 35 days later were subcutaneously inoculated with B16-OVA melanoma. BLS or BLS-OVA induced a significant inhibition of tumor growth, and 50% of mice immunized with the highest dose of BLS did not develop visible tumors. This effect was not observed in TLR4-deficient mice. For treatment experiments, mice were injected with BLS or BLS-OVA 2 days after the inoculation of B16 cells. Both treatments induced significant and equal tumor growth delay and increased survival. Moreover, BLS and BLS-OVA stimulation were also effective in TLR4-deficient mice. In order to study whether BLS has a direct effect on tumor cells, B16 cells were preincubated with BLS, and after 48h, cells were inoculated. Tumors induced by BLS-stimulated cells had inhibited growth and survival was increased. In the BLS group, 40% of mice did not develop tumors. This effect was abolished by the addition of TLR4/MD2 blocking antibody to cells before BLS stimulation. Our work demonstrates that BLS immunization induces a preventive antitumor response that depends on mice TLR4. We also show that BLS generates a therapeutic effect in mice inoculated with B16 cells. Our results show that BLS acts directly in cultured tumor cells via TLR4, highly suggesting that BLS elicits its therapeutic effects acting on the TLR4 from B16 melanoma cells.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2014

Crystallization and preliminary X‐ray characterization of the full‐length bacteriophytochrome from the plant pathogen Xanthomonas campestris pv. campestris

Sebastián Klinke; Lisandro H. Otero; Jimena Rinaldi; Santiago Sosa; Beatriz G. Guimarães; William Shepard; Fernando A. Goldbaum; Hernán R. Bonomi

Phytochromes give rise to the largest photosensor family known to date. However, they are underrepresented in the Protein Data Bank. Plant, cyanobacterial, fungal and bacterial phytochromes share a canonical architecture consisting of an N-terminal photosensory module (PAS2-GAF-PHY domains) and a C-terminal variable output module. The bacterium Xanthomonas campestris pv. campestris, a worldwide agricultural pathogen, codes for a single bacteriophytochrome (XccBphP) that has this canonical architecture, bearing a C-terminal PAS9 domain as the output module. Full-length XccBphP was cloned, expressed and purified to homogeneity by nickel-NTA affinity and size-exclusion chromatography and was then crystallized at room temperature bound to its cofactor biliverdin. A complete native X-ray diffraction data set was collected to a maximum resolution of 3.25 Å. The crystals belonged to space group P43212, with unit-cell parameters a = b = 103.94, c = 344.57 Å and a dimer in the asymmetric unit. Refinement is underway after solving the structure by molecular replacement.

Collaboration


Dive into the Hernán R. Bonomi's collaboration.

Top Co-Authors

Avatar

Fernando A. Goldbaum

University of Maryland Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar

Sebastián Klinke

Fundación Instituto Leloir

View shared research outputs
Top Co-Authors

Avatar

Jimena Rinaldi

Fundación Instituto Leloir

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrián A. Vojnov

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisandro H. Otero

Fundación Instituto Leloir

View shared research outputs
Top Co-Authors

Avatar

María I. Serer

Fundación Instituto Leloir

View shared research outputs
Top Co-Authors

Avatar

Vanesa Zylberman

Fundación Instituto Leloir

View shared research outputs
Top Co-Authors

Avatar

Fernando A. Goldbaum

University of Maryland Biotechnology Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge