Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hernando Tavera is active.

Publication


Featured researches published by Hernando Tavera.


Nature | 2010

Seismic and aseismic slip on the Central Peru megathrust

Hugo Perfettini; Jean-Philippe Avouac; Hernando Tavera; A. P. Kositsky; Jean-Mathieu Nocquet; Francis Bondoux; M. Chlieh; Anthony Sladen; Laurence Audin; Daniel L. Farber; Pierre Soler

Slip on a subduction megathrust can be seismic or aseismic, with the two modes of slip complementing each other in time and space to accommodate the long-term plate motions. Although slip is almost purely aseismic at depths greater than about 40 km, heterogeneous surface strain suggests that both modes of slip occur at shallower depths, with aseismic slip resulting from steady or transient creep in the interseismic and postseismic periods. Thus, active faults seem to comprise areas that slip mostly during earthquakes, and areas that mostly slip aseismically. The size, location and frequency of earthquakes that a megathrust can generate thus depend on where and when aseismic creep is taking place, and what fraction of the long-term slip rate it accounts for. Here we address this issue by focusing on the central Peru megathrust. We show that the Pisco earthquake, with moment magnitude Mw = 8.0, ruptured two asperities within a patch that had remained locked in the interseismic period, and triggered aseismic frictional afterslip on two adjacent patches. The most prominent patch of afterslip coincides with the subducting Nazca ridge, an area also characterized by low interseismic coupling, which seems to have repeatedly acted as a barrier to seismic rupture propagation in the past. The seismogenic portion of the megathrust thus appears to be composed of interfingering rate-weakening and rate-strengthening patches. The rate-strengthening patches contribute to a high proportion of aseismic slip, and determine the extent and frequency of large interplate earthquakes. Aseismic slip accounts for as much as 50–70% of the slip budget on the seismogenic portion of the megathrust in central Peru, and the return period of earthquakes with Mw = 8.0 in the Pisco area is estimated to be 250 years.


Journal of Geophysical Research | 2011

Interseismic coupling and seismic potential along the Central Andes subduction zone

M. Chlieh; Hugo Perfettini; Hernando Tavera; Jean-Philippe Avouac; Dominique Remy; Jean-Mathieu Nocquet; Frédérique Rolandone; Francis Bondoux; Germinal Gabalda; Sylvain Bonvalot

We use about two decades of geodetic measurements to characterize interseismic strain build up along the Central Andes subduction zone from Lima, Peru, to Antofagasta, Chile. These measurements are modeled assuming a 3-plate model (Nazca, Andean sliver and South America Craton) and spatially varying interseismic coupling (ISC) on the Nazca megathrust interface. We also determine slip models of the 1996 M_w = 7.7 Nazca, the 2001 M_w = 8.4 Arequipa, the 2007 M_w = 8.0 Pisco and the M_w = 7.7 Tocopilla earthquakes. We find that the data require a highly heterogeneous ISC pattern and that, overall, areas with large seismic slip coincide with areas which remain locked in the interseismic period (with high ISC). Offshore Lima where the ISC is high, a M_w∼8.6–8.8 earthquake occurred in 1746. This area ruptured again in a sequence of four M_w∼8.0 earthquakes in 1940, 1966, 1974 and 2007 but these events released only a small fraction of the elastic strain which has built up since 1746 so that enough elastic strain might be available there to generate a M_w > 8.5 earthquake. The region where the Nazca ridge subducts appears to be mostly creeping aseismically in the interseismic period (low ISC) and seems to act as a permanent barrier as no large earthquake ruptured through it in the last 500 years. In southern Peru, ISC is relatively high and the deficit of moment accumulated since the M_w∼8.8 earthquake of 1868 is equivalent to a magnitude M_w∼8.4 earthquake. Two asperities separated by a subtle aseismic creeping patch are revealed there. This aseismic patch may arrest some rupture as happened during the 2001 Arequipa earthquake, but the larger earthquakes of 1604 and 1868 were able to rupture through it. In northern Chile, ISC is very high and the rupture of the 2007 Tocopilla earthquake has released only 4% of the elastic strain that has accumulated since 1877. The deficit of moment which has accumulated there is equivalent to a magnitude M_w∼8.7 earthquake. This study thus provides elements to assess the location, size and magnitude of future large megathurst earthquakes in the Central Andes subduction zone. Caveats of this study are that interseismic strain of the forearc is assumed time invariant and entirely elastic. Also a major source of uncertainty is due to fact that the available data place very little constraints on interseismic coupling at shallow depth near the trench, except offshore Lima where sea bottom geodetic measurements have been collected suggesting strong coupling.


Nature | 2015

The role of ridges in the formation and longevity of flat slabs.

Sanja Knezevic Antonijevic; Lara S. Wagner; Abhash Kumar; Susan L. Beck; Long; George Zandt; Hernando Tavera; Cristobal Condori

Flat-slab subduction occurs when the descending plate becomes horizontal at some depth before resuming its descent into the mantle. It is often proposed as a mechanism for the uplifting of deep crustal rocks (‘thick-skinned’ deformation) far from plate boundaries, and for causing unusual patterns of volcanism, as far back as the Proterozoic eon. For example, the formation of the expansive Rocky Mountains and the subsequent voluminous volcanism across much of the western USA has been attributed to a broad region of flat-slab subduction beneath North America that occurred during the Laramide orogeny (80–55 million years ago). Here we study the largest modern flat slab, located in Peru, to better understand the processes controlling the formation and extent of flat slabs. We present new data that indicate that the subducting Nazca Ridge is necessary for the development and continued support of the horizontal plate at a depth of about 90 kilometres. By combining constraints from Rayleigh wave phase velocities with improved earthquake locations, we find that the flat slab is shallowest along the ridge, while to the northwest of the ridge, the slab is sagging, tearing, and re-initiating normal subduction. On the basis of our observations, we propose a conceptual model for the temporal evolution of the Peruvian flat slab in which the flat slab forms because of the combined effects of trench retreat along the Peruvian plate boundary, suction, and ridge subduction. We find that while the ridge is necessary but not sufficient for the formation of the flat slab, its removal is sufficient for the flat slab to fail. This provides new constraints on our understanding of the processes controlling the beginning and end of the Laramide orogeny and other putative episodes of flat-slab subduction.


Journal of Geophysical Research | 2012

Structure of the subduction system in southern Peru from seismic array data

K. E. Phillips; Robert W. Clayton; Paul M. Davis; Hernando Tavera; Richard Guy; Steven Skinner; Igor Stubailo; Laurence Audin; Víctor Aguilar

The subduction zone in southern Peru is imaged using converted phases from teleseismic P, PP, and PKP waves and Pwave tomography using local and teleseismic events with a linear array of 50 broadband seismic stations spanning 300 km from the coast to near Lake Titicaca. The slab dips at 30° and can be observed to a depth of over 200 km. The Moho is seen as a continuous interface along the profile, and the crustal thickness in the back-arc region (the Altiplano) is 75 km thick, which is sufficient to isostatically support the Andes, as evidenced by the gravity. The shallow crust has zones of negative impedance at a depth of 20 km, which is likely the result of volcanism. At the midcrustal level of 40 km, there is a continuous structure with a positive impedance contrast, which we interpret as the western extent of the Brazilian Craton as it underthrusts to the west. V_p/V_s ratios estimated from receiver function stacks show average values for this region with a few areas of elevated V_p/V_s near the volcanic arc and at a few points in the Altiplano. The results support a model of crustal thickening in which the margin crust is underthrust by the Brazilian Shield.


Journal of Seismology | 2002

The Arequipa (Peru) earthquake of June 23, 2001

Hernando Tavera; E. Buforn; Isabel Bernal; Yanet Antayhua; L. Vilacapoma

The Arequipa earthquake of 23 June 2001 hasbeen the largest earthquake (Mw = 8.3)occurredin the last century in southern Peru with amaximum intensity of VIII (MM scale). Focalmechanisms of main shock and three largeraftershocks have been studied, showingthrusting solutions for main shock and twoaftershocks and normal motion for the eventof July, 5. The rupture area has beenobtained from distribution of aftershocks.The occurrence of the Arequipa earthquakeis related with the convergence processbetween the Nazca and South Americaplates.


Geophysical Research Letters | 2014

Response of the Mantle to Flat Slab Evolution: Insights from Local S Splitting beneath Peru

Caroline M. Eakin; Maureen D. Long; Susan L. Beck; Lara S. Wagner; Hernando Tavera; Cristobal Condori

The dynamics of flat subduction, particularly the interaction between a flat slab and the overriding plate, are poorly understood. Here we study the (seismically) anisotropic properties and deformational regime of the mantle directly above the Peruvian flat slab. We analyze shear wave splitting from 370 local S events at 49 stations across southern Peru. We find that the mantle above the flat slab appears to be anisotropic, with modest average delay times (~0.28 s) that are consistent with ~4% anisotropy in a ~30 km thick mantle layer. The most likely mechanism is the lattice-preferred orientation of olivine, which suggests that the observed splitting pattern preserves information about the mantle deformation. We observe a pronounced change in anisotropy along strike, with predominately trench-parallel fast directions in the north and more variable orientations in the south, which we attribute to the ongoing migration of the Nazca Ridge through the flat slab system.


Journal of Geophysical Research | 2016

Postseismic relocking of the subduction megathrust following the 2007 Pisco, Peru, earthquake

Dominique Remy; Hugo Perfettini; N. Cotte; Jean-Philippe Avouac; M. Chlieh; Francis Bondoux; Anthony Sladen; Hernando Tavera; Anne Socquet

Characterizing the time evolution of slip over different phases of the seismic cycle is crucial to a better understanding of the factors controlling the occurrence of large earthquakes. In this study, we take advantage of interferometric synthetic aperture radar data and 3.5 years of continuous Global Positioning System (GPS) measurements to determine interseismic, coseismic, and postseismic slip distributions in the region of the 2007, Mw 8.0 Pisco, earthquake, Peru, using the same fault geometry and inversion method. Our interseismic model, based on pre-2007 campaign GPS data, suggests that the 2007 Pisco seismic slip occurred in a region strongly coupled before the earthquake while afterslip occurred in low coupled regions. Large afterslip occurred in the peripheral area of coseismic rupture in agreement with the notion that afterslip is mainly induced by coseismic stress changes. The temporal evolution of the region of maximum afterslip, characterized by a relaxation time of about 2.3 years, is located in the region where the Nazca ridge is subducting, consistent with rate-strengthening friction promoting aseismic slip. We estimate a return period for the Pisco earthquake of about 230 years with an estimated aseismic slip that might account for about 50% of the slip budget in this region over the 0–50 km seismogenic depth range. A major result of this study is that the main asperity that ruptured during the 2007 Pisco earthquake relocked soon after this event.


Journal of Geophysical Research | 2016

Active tectonics of Peru : heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation

J. C. Villegas-Lanza; M. Chlieh; O. Cavalié; Hernando Tavera; Patrice Baby; J. Chire-Chira; Jean-Mathieu Nocquet

Over 100 GPS sites measured in 2008–2013 in Peru provide new insights into the present-day crustal deformation of the 2200 km long Peruvian margin. This margin is squeezed between the eastward subduction of the oceanic Nazca Plate at the South America trench axis and the westward continental subduction of the South American Plate beneath the Eastern Cordillera and Subandean orogenic wedge. Continental active faults and GPS data reveal the rigid motion of a Peruvian Forearc Sliver that extends from the oceanic trench axis to the Western-Eastern Cordilleras boundary and moves southeastward at 4–5 mm/yr relative to a stable South America reference frame. GPS data indicate that the Subandean shortening increases southward by 2 to 4 mm/yr. In a Peruvian Sliver reference frame, the residual GPS data indicate that the interseismic coupling along the Nazca megathrust is highly heterogeneous. Coupling in northern Peru is shallow and coincides with the site of previous moderate-sized and shallow tsunami-earthquakes. Deep coupling occurs in central and southern Peru, where repeated large and great megathrust earthquakes have occurred. The strong correlation between highly coupled areas and large ruptures suggests that seismic asperities are persistent features of the megathrust. Creeping segments appear at the extremities of great ruptures and where oceanic fracture zones and ridges enter the subduction zone, suggesting that these subducting structures play a major role in the seismic segmentation of the Peruvian margin. In central Peru, we estimate a recurrence time of 305 ± 40 years to reproduce the great 1746 Mw~8.8 Lima-Callao earthquake.


Geochemistry Geophysics Geosystems | 2016

Overriding plate, mantle wedge, slab, and subslab contributions to seismic anisotropy beneath the northern Central Andean Plateau

Maureen D. Long; C. Berk Biryol; Caroline M. Eakin; Susan L. Beck; Lara S. Wagner; George Zandt; Estella Minaya; Hernando Tavera

The Central Andean Plateau, the second-highest plateau on Earth, overlies the subduction of the Nazca Plate beneath the central portion of South America. The origin of the high topography remains poorly understood, and this puzzle is intimately tied to unanswered questions about processes in the upper mantle, including possible removal of the overriding plate lithosphere and interaction with the flow field that results from the driving forces associated with subduction. Observations of seismic anisotropy can provide important constraints on mantle flow geometry in subduction systems. The interpretation of seismic anisotropy measurements in subduction settings can be challenging, however, because different parts of the subduction system may contribute, including the overriding plate, the mantle wedge above the slab, the slab itself, and the deep upper mantle beneath the slab. Here we present measurements of shear wave splitting for core phases (SKS, SKKS, PKS, and sSKS), local S, and source-side teleseismic S phases that sample the upper mantle beneath southern Peru and northern Bolivia, relying mostly on data from the CAUGHT experiment. We find evidence for seismic anisotropy within most portions of the subduction system, although the overriding plate itself likely makes only a small contribution to the observed delay times. Average fast orientations generally trend roughly trench-parallel to trench-oblique, contradicting predictions from the simplest two-dimensional flow models and olivine fabric scenarios. Our measurements suggest complex, layered anisotropy beneath the northern portion of the Central Andean Plateau, with significant departures from a two-dimensional mantle flow regime.


Geosphere | 2017

Causes and consequences of flat-slab subduction in southern Peru

Brandon T. Bishop; Susan L. Beck; George Zandt; Lara S. Wagner; Maureen D. Long; Sanja Knezevic Antonijevic; Abhash Kumar; Hernando Tavera

Flat or near-horizontal subduction of oceanic lithosphere has been an important tectonic process both currently and in the geologic past. Subduction of the aseismic Nazca Ridge beneath South America has been associated with the onset of flat subduction and the termination of arc volcanism in Peru, making it an ideal place to study flat-slab subduction. Recently acquired seismic recordings for 144 broadband seismic stations in Peru permit us to image the Mohorovičić discontinuity (Moho) of the subducted oceanic Nazca plate, Nazca Ridge, and the overlying continental Moho of the South American crust in detail through the calculation of receiver functions. We find that the subducted over-thickened ridge crust is likely significantly eclogitized ~350 km from the trench, requiring that the inboard continuation of the flat slab be supported by mechanisms other than low-density crustal material. This continuation coincides with a low-velocity anomaly identified in prior tomography studies of the region immediately below the flat slab, and this anomaly may provide some support for the flat slab. The subduction of the Nazca Ridge has displaced most, if not the entire South American lithospheric mantle beneath the high Andes as well as up to 10 km of the lowermost continental crust. The lack of deep upper-plate seismicity suggests that the Andean crust has remained warm during flat subduction and is deforming ductilely around the subducted ridge. This deformation shows significant coupling between the subducting Nazca oceanic plate and overriding South American continental plate up to ~500 km from the trench. These results provide important modern constraints for interpreting the geological consequences of past and present flat-slab subduction locations globally.

Collaboration


Dive into the Hernando Tavera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lara S. Wagner

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Chlieh

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Hugo Perfettini

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Philippe Avouac

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Laurence Audin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Francis Bondoux

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Anthony Sladen

University of Nice Sophia Antipolis

View shared research outputs
Researchain Logo
Decentralizing Knowledge