Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Herui Yao is active.

Publication


Featured researches published by Herui Yao.


Cell | 2007

let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells

Fengyan Yu; Herui Yao; Pengcheng Zhu; Xiaoqin Zhang; Qiuhui Pan; Chang Gong; Yijun Huang; Xiaoqu Hu; Fengxi Su; Judy Lieberman; Erwei Song

Cancers may arise from rare self-renewing tumor-initiating cells (T-IC). However, how T-IC self renewal, multipotent differentiation, and tumorigenicity are maintained remains obscure. Because miRNAs can regulate cell-fate decisions, we compared miRNA expression in self-renewing and differentiated cells from breast cancer lines and in breast T-IC (BT-IC) and non-BT-IC from 1 degrees breast cancers. let-7 miRNAs were markedly reduced in BT-IC and increased with differentiation. Infecting BT-IC with let-7-lentivirus reduced proliferation, mammosphere formation, and the proportion of undifferentiated cells in vitro and tumor formation and metastasis in NOD/SCID mice, while antagonizing let-7 by antisense oligonucleotides enhanced in vitro self renewal of non-T-IC. Increased let-7 paralleled reduced H-RAS and HMGA2, known let-7 targets. Silencing H-RAS in a BT-IC-enriched cell line reduced self renewal but had no effect on differentiation, while silencing HMGA2 enhanced differentiation but did not affect self renewal. Therefore let-7 regulates multiple BT-IC stem cell-like properties by silencing more than one target.


Oncogene | 2010

Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells

Fengyan Yu; Heran Deng; Herui Yao; Q. Liu; Fengxi Su; Er Wei Song

Accumulating evidence indicates that a sub-population of cancer cells with stem-like properties, termed tumor-initiating cells (T-ICs), exist in many different kinds of malignancies, which have a pivotal role in tumorigenesis, tumor progression, metastasis and post-treatment relapse. However, how the stem-like properties of T-ICs are regulated remains obscure. Our previous study showed that reduction of let-7 microRNA (miRNA) in breast tumor-initiating cells (BT-ICs) contributes to the maintenance of their self-renewal capacity and undifferentiated status. In this study we show the effect of mir-30 reduction on the stem-like features of BT-ICs. Similar to let-7, mir-30 is reduced in BT-ICs, and the protein level of Ubc9 (ubiquitin-conjugating enzyme 9) and ITGB3 (integrin β3), the target genes of mir-30, is markedly upregulated. Enforced constitutive expression of mir-30 in BT-ICs inhibits their self-renewal capacity by reducing Ubc9, and induces apoptosis through silencing ITGB3. On the contrary, blocking the miRNA with a specific antisense oligonucleotide (ASO) in differentiated breast cancer cells revived their self-renewal capacity. Furthermore, ectopic expression of mir-30 in BT-IC xenografts reduces tumorigenesis and lung metastasis in nonobese diabetic/severe combined immunodeficient mice, whereas blocking mir-30 expression enhances tumorigenesis and metastasis. Together, our data suggest mir-30 as one of the important miRNAs in regulating the stem-like features of T-ICs.


Cancer Cell | 2014

A Positive Feedback Loop between Mesenchymal-like Cancer Cells and Macrophages Is Essential to Breast Cancer Metastasis

Shicheng Su; Qiang Liu; Jingqi Chen; Jianing Chen; Fei Chen; Chonghua He; Di Huang; Wei Wu; Ling Lin; Wei Huang; Jin Zhang; Xiuying Cui; Fang Zheng; Haiyan Li; Herui Yao; Fengxi Su; Erwei Song

The close vicinity of cancer cells undergoing epithelial-mesenchymal transition (EMT) and tumor-associated macrophages (TAMs) at the invasive front of tumors suggests that these two cell type may mutually interact. We show that mesenchymal-like breast cancer cells activate macrophages to a TAM-like phenotype by GM-CSF. Reciprocally, CCL18 from TAMs induces cancer cell EMT, forming a positive feedback loop, in coculture systems and humanized mice. Inhibition of GM-CSF or CCL18 breaks this loop and reduces cancer metastasis. High GM-CSF expression in breast cancer samples is associated with more CCL18(+) macrophages, cancer cell EMT, enhanced metastasis, and reduced patient survival. These findings suggest that a positive feedback loop between GM-CSF and CCL18 is important in breast cancer metastasis.


Journal of Biological Chemistry | 2011

Up-regulation of miR-21 Mediates Resistance to Trastuzumab Therapy for Breast Cancer

Chang Gong; Yandan Yao; Ying Wang; Bodu Liu; Wei Wu; Jianing Chen; Fengxi Su; Herui Yao; Erwei Song

Trastuzumab resistance emerges to be a major issue in anti-human epidermal growth factor receptor 2 (HER2) therapy for breast cancers. Here, we demonstrated that miR-21 expression was up-regulated and its function was elevated in HER2+ BT474, SKBR3, and MDA-MB-453 breast cancer cells that are induced to acquire trastuzumab resistance by long-term exposure to the antibody, whereas protein expression of the PTEN gene, a miR-21 target, was reduced. Blocking the action of miR-21 with antisense oligonucleotides re-sensitized the resistant cells to the therapeutic activities of trastuzumab by inducing growth arrest, proliferation inhibition, and G1-S cell cycle checking in the presence of the antibody. Ectopic expression of miR-21 in HER2+ breast cancer cells confers resistance to trastuzumab. Rescuing PTEN expression with a p3XFLAG-PTEN-mut construct with deleted miR-21 targeting sequence at its 3′ UTR restored the growth inhibition of trastuzumab in the resistant cells by inducing PTEN activation and AKT inhibition. In vivo, administering miR-21 antisense oligonucleotides restored trastuzumab sensitivity in the resistant breast cancer xenografts by inducing PTEN expression, whereas injection of miR-21 mimics conferred trastuzumab resistant in the sensitive breast tumors via PTEN silence. Up-regulatin of miR-21 in tumor biopsies obtained from patients receiving pre-operative trastuzumab therapy was associated with poor trastuzumab response. Therefore, miR-21 overexpression contributes to trastuzumab resistance in HER2+ breast cancers and antagonizing miR-21 demonstrates therapeutic potential by sensitizing the malignancy to anti-HER2 treatment.


Clinical Cancer Research | 2011

Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5

Yinghua Zhu; Fengyan Yu; Yu Jiao; Juan Feng; Wei Tang; Herui Yao; Chang Gong; Jianing Chen; Fengxi Su; Yan Zhang; Erwei Song

Purpose: Tumor-initiating cells are resistant to chemotherapy, but how microRNAs play a role in regulating drug resistance of breast tumor–initiating cells (BT-IC) needs to be clarified. Experimental Design: Lentivirus-mediated miR-128 transduction was done in BT-ICs, enriched by mammosphere cultures or CD44+CD24− fluorescence-activated cell sorting. Apoptosis and DNA damage were determined upon treatment with doxorubicin. Expression of miR-128 in breast cancer tissues was examined by in situ hybridization and correlated with breast tumor response to neoadjuvant chemotherapy and patient survival. Results: MiR-128 was significantly reduced in chemoresistant BT-ICs enriched from breast cancer cell lines and primary breast tumors (P < 0.01), accompanied by an overexpression of Bmi-1 and ABCC5, which were identified as targets of miR-128. Ectopic expression of miR-128 reduced the protein levels of Bmi-1 and ABCC5 in BT-ICs, along with decreased cell viability (P < 0.001) and increased apoptosis (P < 0.001) and DNA damage (P < 0.001) in the presence of doxorubicin. Reduced miR-128 expression in breast tumor tissues was associated with chemotherapeutic resistance (P < 0.001) and poor survival of breast cancer patients (P < 0.05; n = 57). Conclusions: Reduction in miR-128 leading to Bmi-1 and ABCC5 overexpression is a stem cell–like feature of BT-ICs, which contributes to chemotherapeutic resistance in breast cancers. Ectopic expression of miR-128 sensitizes BT-ICs to the proapoptotic and DNA-damaging effects of doxorubicin, indicating therapeutic potential. Clin Cancer Res; 17(22); 7105–15. ©2011 AACR.


PLOS ONE | 2013

Long Noncoding RNA HOTAIR Is a Prognostic Marker for Esophageal Squamous Cell Carcinoma Progression and Survival

Xiaobin Lv; Gui-Yong Lian; Hao-Ran Wang; Erwei Song; Herui Yao; Minghui Wang

Background It is currently unclear whether the expression of HOX transcript antisense RNA (HOTAIR) correlates with the progression of esophageal cancer. The aim of this study was to examine HOTAIR expression in patients with esophageal squamous cell cancer (ESCC) and explore its clinical significance. Methods Differences in the expression of HOTAIR were examined via in situ hybridization (ISH) and quantitative reverse transcriptase PCR (qRT-PCR). The prognostic significance was evaluated using Kaplan–Meier and Cox regression analyses. Proliferation, colony formation and migration assays were performed in ESCC cell lines to determine the function of HOTAIR in the progression of ESCC in vitro. Results A notably higher level of HOTAIR expression was found in ESCC tissues. High expression levels of HOTAIR in ESCC patients correlated positively with clinical stage, TNM classification, histological differentiation and vital status. HOTAIR expression was found to be an independent prognostic factor in ESCC patients. ESCC patients who expressed high levels of HOTAIR had substantially lower overall 5-year survival rates than HOTAIR-negative patients. In vitro assays of ESCC cell lines demonstrated that HOTAIR mediated the proliferation, colony formation and migratory capacity of ESCC cells. Conclusion HOTAIR is a potential biomarker for ESCC prognosis, and the dysregulation of HOTAIR may play an important role in ESCC progression.


Nature Communications | 2015

miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program

Shicheng Su; Qiyi Zhao; Chonghua He; Di Huang; Jiang Liu; Fei Chen; Jianing Chen; Jian You Liao; Xiuying Cui; Yunjie Zeng; Herui Yao; Fengxi Su; Qiang Liu; Shanping Jiang; Erwei Song

Macrophages play a pivotal role in tissue fibrogenesis, which underlies the pathogenesis of many end-stage chronic inflammatory diseases. MicroRNAs are key regulators of immune cell functions, but their roles in macrophages fibrogenesis have not been characterized. Here we show that IL-4 and IL-13 induce miR-142-5p and downregulate miR-130a-3p in macrophages; these changes sustain the profibrogenic effect of macrophages. In vitro, miR-142-5p mimic prolongs STAT6 phosphorylation by targeting its negative regulator, SOCS1. Blocking miR-130a relieves its inhibition of PPARγ, which coordinates STAT6 signalling. In vivo, inhibiting miR-142-5p and increasing miR-130a-3p expression with locked nucleic acid-modified oligonucleotides inhibits CCL4-induced liver fibrosis and bleomycin-induced lung fibrosis in mice. Furthermore, macrophages from the tissue samples of patients with liver cirrhosis and idiopathic pulmonary fibrosis display increased miR-142-5p and decreased miR-130a-3p expression. Therefore, miR-142-5p and miR-130a-3p regulate macrophage profibrogenic gene expression in chronic inflammation.


Journal of Biological Chemistry | 2013

The Overexpression of Hypomethylated miR-663 Induces Chemotherapy Resistance in Human Breast Cancer Cells by Targeting Heparin Sulfate Proteoglycan 2 (HSPG2)

Haiyan Hu; Shuqin Li; Xiuying Cui; Xiaobin Lv; Yu Jiao; Fengyan Yu; Herui Yao; Erwei Song; Yongsong Chen; Minghui Wang; Ling Lin

Background: miR-663 is related to chemosensitivity in human breast cancer cells. Results: Overexpression of miR-663 was associated with chemoresistance and accompanied by down-regulation of HSPG2. Conclusion: Overexpression of hypomethylated miR-663 induces chemoresistance in breast cancer cells by down-regulating HSPG2. Significance: Learning how miR-663 regulates chemoresistance may provide a potential target for the miRNA-based approach of breast cancer therapy. MicroRNAs are involved in regulating the biology of cancer cells, but their involvement in chemoresistance is not fully understood. We found that miR-663 was up-regulated in our induced multidrug-resistant MDA-MB-231/ADM cell line and that this up-regulation was closely related to chemosensitivity. In the present study, we aimed to clarify the role of miR-663 in regulating the chemoresistance of breast cancer. MicroRNA microarray and quantitative RT-PCR assays were used to identify differentially expressed microRNAs. Cell apoptosis was evaluated by annexin V/propidium iodide staining, TUNEL, and reactive oxygen species generation analysis. The expression of miR-663 and HSPG2 in breast cancer tissues was detected by in situ hybridization and immunohistochemistry. The potential targets of miR-663 were defined by a luciferase reporter assay. Bisulfite sequencing PCR was used to analyze the methylation status. We found that miR-663 was significantly elevated in MDA-MB-231/ADM cells, and the down-regulation of miR-663 sensitized MDA-MB-231/ADM cells to both cyclophosphamide and docetaxel. The overexpression of miR-663 in breast tumor tissues was associated with chemoresistance; in MDA-MB-231 cells, this chemoresistance was accompanied by the down-regulation of HSPG2, which was identified as a target of miR-663. MDA-MB-231/ADM contained fewer methylated CpG sites than its parental cell line, and miR-663 expression in MDA-MB-231 cells was reactivated by 5-aza-29-deoxycytidine treatment, indicating that DNA methylation may play a functional role in the expression of miR-663. Our findings suggest that the overexpression of hypomethylated miR-663 induced chemoresistance in breast cancer cells by down-regulating HSPG2, thus providing a potential target for the development of an microRNA-based approach for breast cancer therapy.


PLOS ONE | 2014

MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha.

Fengting Huang; Jian Tang; Xiaohong Zhuang; Yan-Yan Zhuang; Wenjie Cheng; Herui Yao; Shineng Zhang

Aberrant expression of miR-196a has been frequently reported in different cancers including pancreatic cancer. However, its function in pancreatic cancer has not been fully elucidated. Here, we investigated the expression pattern and the biological role of miR-196a in pancreatic cancer cell lines, as well as its interaction with a metastasis-related gene, nuclear factor-kappa-B-inhibitor alpha (NFKBIA). We demonstrated that miR-196a was up-regulated in human pancreatic cancer cell lines compared with immortalized pancreatic ductal epithelial cells by means of microRNAs microarray and qRT-PCR. Furthermore, down-regulation of miR-196a in PANC-1 suppressed its proliferation and migration with an increase in G0/G1 transition and decreased expression of Cyclin D1 and CDK4/6. Meanwhile, an increased expression in E-cadherin and decreased expression in N-cadherin and Vimentin were also observed. We identified a novel miR-196a target, NFKBIA, and down-regulation of miR-196a enhanced the expression of NFKBIA protein. Luciferase assay confirmed that NFKBIA was a direct and specific target of miR-196a. Silencing NFKBIA in PANC-1 cells enhanced its proliferation and migration. Taken together, our findings indicate that miR-196a is highly expressed in pancreatic cancer cell lines, and may play a crucial role in pancreatic cancer proliferation and migration, possibly through its downstream target, NFKBIA. Thus, miR-196a may serve as a potential therapeutic target for pancreatic cancer.


PLOS ONE | 2010

Markers of tumor-initiating cells predict chemoresistance in breast cancer.

Chang Gong; Herui Yao; Qiang Liu; Jingqi Chen; Junwei Shi; Fengxi Su; Erwei Song

Purpose Evidence is lacking whether the number of breast tumor-initiating cells (BT-ICs) directly correlates with the sensitivity of breast tumors to chemotherapy. Here, we evaluated the association between proportion of BT-ICs and chemoresistance of the tumors. Methods Immunohistochemical staining(IHC) was used to examine the expression of aldehyde dehydrogenase 1 (ALDH1) and proliferating cell nuclear antigen, and TUNEL was used to detect the apoptosis index. The significance of various variables in patient survival was analyzed using a Cox proportional hazards model. The percentage of BT-ICs in breast cancer cell lines and primary breast tumors was determined by ALDH1 enzymatic assay, CD44+/CD24− phenotype and mammosphere formation assay. Results ALDH1 expression determined by IHC in primary breast cancers was associated with poor clinical response to neoadjuvant chemotherapy and reduced survival in breast cancer patients. Breast tumors that contained higher proportion of BT-ICs with CD44+/CD24− phenotype, ALDH1 enzymatic activity and sphere forming capacity were more resistant to neoadjuvant chemotherapy. Chemoresistant cell lines AdrR/MCF-7 and SK-3rd, had increased number of cells with sphere forming capacity, CD44+/CD24− phenotype and side-population. Regardless the proportion of T-ICs, FACS-sorted CD44+/CD24− cells that derived from primary tumors or breast cancer lines were about 10–60 fold more resistant to chemotherapy relative to the non- CD44+/CD24− cells and their parental cells. Furthermore, our data demonstrated that MDR1 (multidrug resistance 1) and ABCG2 (ATP-binding cassette sub-family G member 2) were upregulated in CD44+/CD24− cells. Treatment with lapatinib or salinomycin reduced the proportion of BT-ICs by nearly 50 fold, and thus enhanced the sensitivity of breast cancer cells to chemotherapy by around 30 fold. Conclusions These data suggest that the proportion of BT-ICs is associated with chemotherapeutic resistance of breast cancer. It highlights the importance of targeting T-ICs, rather than eliminating the bulk of rapidly dividing and terminally differentiated cells, in novel anti-cancer strategies.

Collaboration


Dive into the Herui Yao's collaboration.

Top Co-Authors

Avatar

Fengxi Su

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Erwei Song

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Qiang Liu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang Gong

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Ying Wang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Shicheng Su

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yunfang Yu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Di Huang

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge