Shicheng Su
Sun Yat-sen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shicheng Su.
Cancer Cell | 2014
Shicheng Su; Qiang Liu; Jingqi Chen; Jianing Chen; Fei Chen; Chonghua He; Di Huang; Wei Wu; Ling Lin; Wei Huang; Jin Zhang; Xiuying Cui; Fang Zheng; Haiyan Li; Herui Yao; Fengxi Su; Erwei Song
The close vicinity of cancer cells undergoing epithelial-mesenchymal transition (EMT) and tumor-associated macrophages (TAMs) at the invasive front of tumors suggests that these two cell type may mutually interact. We show that mesenchymal-like breast cancer cells activate macrophages to a TAM-like phenotype by GM-CSF. Reciprocally, CCL18 from TAMs induces cancer cell EMT, forming a positive feedback loop, in coculture systems and humanized mice. Inhibition of GM-CSF or CCL18 breaks this loop and reduces cancer metastasis. High GM-CSF expression in breast cancer samples is associated with more CCL18(+) macrophages, cancer cell EMT, enhanced metastasis, and reduced patient survival. These findings suggest that a positive feedback loop between GM-CSF and CCL18 is important in breast cancer metastasis.
PLOS ONE | 2012
Wei Tang; Jiujun Zhu; Shicheng Su; Wei Wu; Qiang Liu; Fengxi Su; Fengyan Yu
Background MicroRNA-27a (miR-27a) is thought to be an onco-microRNA that promotes tumor growth and metastasis by downregulating ZBTB10. The potential predictive value of miR-27a was studied in breast cancer patients. Methods The expression of miR-27a and ZBTB10 was examined in 102 breast cancer cases using in situ hybridization (ISH) and immunohistochemistry techniques and were evaluated semi-quantitatively by examining the staining index. The Correlation of miR-27a and ZBTB10 expression was analyed by Spearman Rank Correlation. The association of miR-27a and ZBTB10 expression with clinicopathological characteristics was analyzed using the χ2 test, and their effects on patient survival were analyzed by a log-rank test and the Kaplan-Meier method. Univariate and multivariate Cox regression analyses were used to evaluate the prognostic values of miR-27a and ZBTB10. Results miR-27a was markedly up-regulated in invasive breast cancers that expressed low levels of ZBTB10 (P<0.001). A reverse correlation between miR-27a and ZBTB10 was also observed in breast cancer tissue samples (rs = −0.478, P<0.001). Furthermore, the expression of miR-27a and ZBTB10 was significantly correlated with clinicopathological parameters, including tumor size, lymph node metastasis and distant metastasis (P<0.05), but not with receptor status. Patients with high miR-27a or low ZBTB10 expression tended to have significantly shorter disease-free survival times (57 months and 53 months, respectively, P <0.001) and overall survival times (58 months and 55 months, respectively, P <0.001). Univariate and multivariate analysis showed that both miR-27a and ZBTB10 were independent prognostic factors of disease-free survival in breast cancer patients (P <0.001), while only miR-27a was an independent predictor of overall survival (P <0.001). Conclusions High miR-27a expression is associated with poor overall survival in patients with breast cancer, which suggests that miR-27a could be a valuable marker of breast cancer progression.
Nature Communications | 2015
Shicheng Su; Qiyi Zhao; Chonghua He; Di Huang; Jiang Liu; Fei Chen; Jianing Chen; Jian You Liao; Xiuying Cui; Yunjie Zeng; Herui Yao; Fengxi Su; Qiang Liu; Shanping Jiang; Erwei Song
Macrophages play a pivotal role in tissue fibrogenesis, which underlies the pathogenesis of many end-stage chronic inflammatory diseases. MicroRNAs are key regulators of immune cell functions, but their roles in macrophages fibrogenesis have not been characterized. Here we show that IL-4 and IL-13 induce miR-142-5p and downregulate miR-130a-3p in macrophages; these changes sustain the profibrogenic effect of macrophages. In vitro, miR-142-5p mimic prolongs STAT6 phosphorylation by targeting its negative regulator, SOCS1. Blocking miR-130a relieves its inhibition of PPARγ, which coordinates STAT6 signalling. In vivo, inhibiting miR-142-5p and increasing miR-130a-3p expression with locked nucleic acid-modified oligonucleotides inhibits CCL4-induced liver fibrosis and bleomycin-induced lung fibrosis in mice. Furthermore, macrophages from the tissue samples of patients with liver cirrhosis and idiopathic pulmonary fibrosis display increased miR-142-5p and decreased miR-130a-3p expression. Therefore, miR-142-5p and miR-130a-3p regulate macrophage profibrogenic gene expression in chronic inflammation.
Oncotarget | 2015
Pengnan Hu; Junjun Chu; Yanqing Wu; Lijuan Sun; Xiaobin Lv; Yinghua Zhu; Jingjing Li; Qiannan Guo; Chang Gong; Bodu Liu; Shicheng Su
Long noncoding RNA NBAT1 (neuroblastoma associated transcript 1) regulates cell proliferation and invasion by interacting with PRC2 (polycomb repressive complex 2) member EZH2 (enhancer of zeste 2). Decreased expression of NBAT1 is associated with poor clinical outcome in neuroblastomas. However, the roles of NBAT1 in other cancers remain unknown. Here, we report that NBAT1 is down-regulated in various types of cancer. Particularly, reduced NBAT1 in breast cancer is associated with tumor metastasis and poor patient prognosis. In vitro, ectopic NBAT1 inhibits migration and invasion of breast cancer cells. Mechanistic study shows that NBAT1 is associated with PRC2 member EZH2 and regulates global gene expression profile. Among them, DKK1 (dickkopf WNT signaling pathway inhibitor 1) is found to be regulated by NBAT1 in a PRC2 dependent manner, and is responsible for NBAT1s effects in inhibiting migration and invasion of breast cancer cells. Taken together, our study demonstrates that long noncoding RNA NBAT1 is a potential breast cancer prognostic marker, as well as a potential therapeutic target to inhibit breast cancer metastasis.
Cell | 2018
Shicheng Su; Jianing Chen; Herui Yao; Jiang Liu; Shubin Yu; Liyan Lao; Minghui Wang; Manli Luo; Yue Xing; Fei Chen; Di Huang; Jinghua Zhao; Linbin Yang; Dan Liao; Fengxi Su; Mengfeng Li; Qiang Liu; Erwei Song
Carcinoma-associated fibroblasts (CAFs) are abundant and heterogeneous stromal cells in tumor microenvironment that are critically involved in cancer progression. Here, we demonstrate that two cell-surface molecules, CD10 and GPR77, specifically define a CAF subset correlated with chemoresistance and poor survival in multiple cohorts of breast and lung cancer patients. CD10+GPR77+ CAFs promote tumor formation and chemoresistance by providing a survival niche for cancer stem cells (CSCs). Mechanistically, CD10+GPR77+ CAFs are driven by persistent NF-κB activation via p65 phosphorylation and acetylation, which is maintained by complement signaling via GPR77, a C5a receptor. Furthermore, CD10+GPR77+ CAFs promote successful engraftment of patient-derived xenografts (PDXs), and targeting these CAFs with a neutralizing anti-GPR77 antibody abolishes tumor formation and restores tumor chemosensitivity. Our study reveals a functional CAF subset that can be defined and isolated by specific cell-surface markers and suggests that targeting the CD10+GPR77+ CAF subset could be an effective therapeutic strategy against CSC-driven solid tumors.
Cell Research | 2017
Shicheng Su; Jianyou Liao; Jiang Liu; Di Huang; Chonghua He; Fei Chen; Lin Bing Yang; Wei Wu; Jianing Chen; Ling Lin; Yunjie Zeng; Nengtai Ouyang; Xiuying Cui; Herui Yao; Fengxi Su; Jian-Dong Huang; Judy Lieberman; Qiang Liu; Erwei Song
The origin of tumor-infiltrating Tregs, critical mediators of tumor immunosuppression, is unclear. Here, we show that tumor-infiltrating naive CD4+ T cells and Tregs in human breast cancer have overlapping TCR repertoires, while hardly overlap with circulating Tregs, suggesting that intratumoral Tregs mainly develop from naive T cells in situ rather than from recruited Tregs. Furthermore, the abundance of naive CD4+ T cells and Tregs is closely correlated, both indicating poor prognosis for breast cancer patients. Naive CD4+ T cells adhere to tumor slices in proportion to the abundance of CCL18-producing macrophages. Moreover, adoptively transferred human naive CD4+ T cells infiltrate human breast cancer orthotopic xenografts in a CCL18-dependent manner. In human breast cancer xenografts in humanized mice, blocking the recruitment of naive CD4+ T cells into tumor by knocking down the expression of PITPNM3, a CCL18 receptor, significantly reduces intratumoral Tregs and inhibits tumor progression. These findings suggest that breast tumor-infiltrating Tregs arise from chemotaxis of circulating naive CD4+ T cells that differentiate into Tregs in situ. Inhibiting naive CD4+ T cell recruitment into tumors by interfering with PITPNM3 recognition of CCL18 may be an attractive strategy for anticancer immunotherapy.
Cancer Research | 2017
Di Huang; Shi-Jian Song; Zi-Zhao Wu; Wei Wu; Xiuying Cui; Jianing Chen; Mu Sheng Zeng; Shicheng Su
Chronic inflammation induced by persistent microbial infection plays an essential role in tumor progression. Although it is well documented that Epstein-Barr virus (EBV) infection is closely associated with nasopharyngeal carcinoma (NPC), how EBV-induced inflammation promotes NPC progression remains largely unknown. Here, we report that tumor infiltration of tumor-associated macrophages (TAM) and expression of CCL18, the cytokine preferentially secreted by TAM, closely correlate with serum EBV infection titers and tumor progression in two cohorts of NPC patients. In vitro, compared with EBV- NPC cell lines, EBV+ NPC cell lines exhibited superior capacity to attract monocytes and skew them to differentiate to a TAM-like phenotype. Cytokine profiling analysis revealed that NPC cells with active EBV replications recruited monocytes by VEGF and induced TAM by GM-CSF in an NF-κB-dependent manner. Reciprocally, TAM induced epithelial-mesenchymal transition and furthered NF-κB activation of tumor cells by CCL18. In humanized mice, NPC cells with active EBV replications exhibited increased metastasis, and neutralization of CCL18, GM-CSF, and VEGF significantly reduced metastasis. Collectively, our work defines a feed-forward loop between tumor cells and macrophages in NPC, which shows how metastatic potential can evolve concurrently with virus-induced chronic inflammation. Cancer Res; 77(13); 3591-604. ©2017 AACR.
OncoImmunology | 2014
Shicheng Su; Wei Wu; Chonghua He; Qiang Liu; Erwei Song
We recently identified a vicious cycle between granulocyte macrophage colony stimulating factor (GM-CSF) arising from breast cancer cells that have undergone epithelial-mesenchymal transition (EMT) and the tumor-associated macrophage (TAM)-derived chemokine CCL18, a signaling loop that promotes tumor metastasis. Tumor-derived lactate skews GM-CSF-activated macrophages to an anti-inflammatory and immunosuppressive M2 phenotype, suggesting that breaking this cycle in combination with glycolysis inhibitors may inhibit tumor development.
Medicine | 2014
Di Huang; Shicheng Su; Xiuying Cui; Ximing Shen; Yunjie Zeng; Wei Wu; Jianing Chen; Fei Chen; Chonghua He; Jiang Liu; Wei Huang; Qiang Liu; Fengxi Su; Erwei Song; Nengtai Ouyang
AbstractEmerging evidence has indicated nerve fibers as a marker in the progression of various types of cancers, such as pancreatic cancer and prostate cancer. However, whether nerve fibers are associated with breast cancer progression remains unclear.In this study, we evaluated the presence of nerve fibers in 352 breast cancer specimens and 83 benign breast tissue specimens including 43 cases of cystic fibrosis and 40 cases of fibroadenoma from 2 independent breast tumor center using immunohistochemical staining for specific peripheral nerve fiber markers.In all, nerve fibers were present in 130 out of 352 breast cancer tissue specimens, while none were detected in normal breast tissue specimens. Among 352 cases, we defined 239 cases from Sun Yat-Sen Memorial Hospital, Guangzhou, China, as the training set, and 113 cases from the First Affiliated Hospital of Shantou University, Guangdong, China, as the validation set. The thickness of tumor-involving nerve fibers is significantly correlated with poor differentiation, lymph node metastasis, high clinical staging, and triple negative subtype in breast cancer. More importantly, Cox multifactor analysis indicates that the thickness of tumor-involving nerve fibers is a previously unappreciated independent prognostic factors associated with shorter disease-free survival of breast cancer patients. Our findings are further validated by online Oncomine database.In conclusion, our results show that nerve fiber involvement in breast cancer is associated with progression of the malignancy and warrant further studies in the future.
International Journal of Cancer | 2018
Wei Wu; Fei Chen; Xiuying Cui; Limei Yang; Jianing Chen; Jinghua Zhao; Di Huang; Jiang Liu; Linbin Yang; Jiayi Zeng; Zhiqing Zeng; Yunbao Pan; Fengxi Su; Junchao Cai; Zhongfu Ying; Qiyi Zhao; Erwei Song; Shicheng Su
TGF‐β plays a central role in mediating epithelial–mesenchymal transition (EMT) by activating the Smad pathway. In addition, accumulating evidence suggests that TGF‐β‐induced EMT is NF‐κB‐dependent in various cancer types. However, it is largely unclear if NF‐κB mediates TGF‐β‐induced EMT in breast cancer, and if this mediation occurs, the regulatory mechanisms are unknown. In our study, we found that TGF‐β activates the NF‐κB pathway. Inhibition of NF‐κB signaling markedly abrogates TGF‐β‐induced EMT. By studying the regulatory mechanism of TGF‐β‐induced NF‐κB signaling, we found that lncRNA NKILA was upregulated by TGF‐β and was essential for the negative feedback regulation of the NF‐κB pathway. Accordingly, overexpression of NKILA significantly reduced TGF‐β‐induced tumor metastasis in vivo. Consistent with the results from mice, the expression of NKILA was negatively correlated with EMT phenotypes in clinical breast cancer samples. Collectively, our study indicated that the NKILA‐mediated negative feedback affects TGF‐β‐induced NF‐κB activation and that NKILA may be a therapeutic molecule in breast cancer metastasis via inhibition of EMT.