Hervé Alexandre
University of Burgundy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hervé Alexandre.
European Journal of Clinical Nutrition | 2010
Giuseppe Spano; Pasquale Russo; Aline Lonvaud-Funel; Hervé Alexandre; C. Grandvalet; Emmanuel Coton; Monika Coton; L. Barnavon; B. Bach; Fergal P. Rattray; A. Bunte; Christian Magni; Victor Ladero; Miguel A. Alvarez; María Fernández; Paloma López; P.F. de Palencia; Angel L. Corbí; Hein Trip; Juke S. Lolkema
Food-fermenting lactic acid bacteria (LAB) are generally considered to be non-toxic and non-pathogenic. Some species of LAB, however, can produce biogenic amines (BAs). BAs are organic, basic, nitrogenous compounds, mainly formed through decarboxylation of amino acids. BAs are present in a wide range of foods, including dairy products, and can occasionally accumulate in high concentrations. The consumption of food containing large amounts of these amines can have toxicological consequences. Although there is no specific legislation regarding BA content in many fermented products, it is generally assumed that they should not be allowed to accumulate. The ability of microorganisms to decarboxylate amino acids is highly variable, often being strain specific, and therefore the detection of bacteria possessing amino acid decarboxylase activity is important to estimate the likelihood that foods contain BA and to prevent their accumulation in food products. Moreover, improved knowledge of the factors involved in the synthesis and accumulation of BA should lead to a reduction in their incidence in foods.
Journal of Industrial Microbiology & Biotechnology | 1998
Hervé Alexandre; C Charpentier
Recently a number of studies have focused on the factors responsible for the occurrence of stuck and sluggish fermentations. Results from these studies indicate that together with nutritional deficiencies and inhibitory substances, technological practices could lead to such situations. This review explains, from a biochemical point of view, the influence of nutritional deficiencies, inhibitory substances and technological practices on yeast cell development and physiology and the fermentation process.
Food Microbiology | 2012
Mohand Sadoudi; Raphaëlle Tourdot-Maréchal; Sandrine Rousseaux; Damien Steyer; Joan-Josep Gallardo-Chacón; Jordi Ballester; Stefania Vichi; Rémi Guérin-Schneider; Josep Caixach; Hervé Alexandre
There has been increasing interest in the use of selected non-Saccharomyces yeasts in co-culture with Saccharomyces cerevisiae. The main reason is that the multistarter fermentation process is thought to simulate indigenous fermentation, thus increasing wine aroma complexity while avoiding the risks linked to natural fermentation. However, multistarter fermentation is characterised by complex and largely unknown interactions between yeasts. Consequently the resulting wine quality is rather unpredictable. In order to better understand the interactions that take place between non-Saccharomyces and Saccharomyces yeasts during alcoholic fermentation, we analysed the volatile profiles of several mono-culture and co-cultures. Candida zemplinina, Torulaspora delbrueckii and Metschnikowia pulcherrima were used to conduct fermentations either in mono-culture or in co-culture with S. cerevisiae. Up to 48 volatile compounds belonging to different chemical families were quantified. For the first time, we show that C. zemplinina is a strong producer of terpenes and lactones. We demonstrate by means of multivariate analysis that different interactions exist between the co-cultures studied. We observed a synergistic effect on aromatic compound production when M. pulcherrima was in co-culture with S. cerevisiae. However a negative interaction was observed between C. zemplinina and S. cerevisiae, which resulted in a decrease in terpene and lactone content. These interactions are independent of biomass production. The aromatic profiles of T. delbrueckii and S. cerevisiae in mono-culture and in co-culture are very close, and are biomass-dependent, reflecting a neutral interaction. This study reveals that a whole family of compounds could be altered by such interactions. These results suggest that the entire metabolic pathway is affected by these interactions.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Régis D. Gougeon; Marianna Lucio; Moritz Frommberger; Dominique Peyron; David Chassagne; Hervé Alexandre; François Feuillat; Andrée Voilley; Philippe Cayot; Istvan Gebefügi; Norbert Hertkorn; Philippe Schmitt-Kopplin
Wine chemical compositions, which result from a complex interplay between environmental factors, genetic factors, and viticultural practices, have mostly been studied using targeted analyses of selected families of metabolites. Detailed studies have particularly concerned volatile and polyphenolic compounds because of their acknowledged roles in the organoleptic and therapeutic properties. However, we show that an unprecedented chemical diversity of wine composition can be unraveled through a nontargeted approach by ultrahigh-resolution mass spectrometry, which provides an instantaneous image of complex interacting processes, not easily or possibly resolvable into their unambiguous individual contributions. In particular, the statistical analysis of a series of barrel-aged wines revealed that 10-year-old wines still express a metabologeographic signature of the forest location where oaks of the barrel in which they were aged have grown.
Microbiology | 1996
Hervé Alexandre; Bruno Mathieu; Claudine Charpentier
Decanoic acid, a lipophilic agent, inhibited in vitro the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae grown in YPD medium. Conversely, when decanoic acid (35 microM) was present in the growth medium, the measured H(+)-ATPase activity was four times higher than that of control cells. Km, and pH and orthovanadate sensitivity were the same for the two growth conditions, which indicated that H(+)-ATPase activation was not due to conformational changes in the enzyme. The activation process was not entirely reversible which showed that plasma membrane H(+)-ATPase activation is due to several mechanisms. 1,6-diphenyl-1,3,5-hexatriene anisotropy performed on protoplasts from cells grown in YPD revealed that as decanoic acid concentration was increased, anisotropy significantly decreased, i.e. membrance fluidity increased. Cells grown in media containing decanoic acid exhibited greater membrane fluidity compared with control cells. Furthermore, these cells did not show any fluidifying effect when increased concentrations of decanoic acid were added. Chemical analysis of cell membrane lipid composition revealed a modification in the distribution of the phospholipid fatty acids and sterols in cells grown in the presence of 35 microM decanoic acid compared with control cells. Our results support the view that the plasma membrane H(+)-ATPase activation induced by decanoic acid is correlated with an alteration in membrane lipid constituents.
Food Microbiology | 2012
Virginie Serpaggi; Fabienne Remize; Ghislaine Recorbet; Eliane Gaudot-Dumas; Anabelle Sequeira-Le Grand; Hervé Alexandre
Although the viable but not culturable (VBNC) state has been studied in detail in bacteria, it has been suggested that maintenance of viability with loss of culturability also exists in eukaryotic cells, such as in the wine spoilage yeast Brettanomyces. To provide conclusive evidence for the existence of a VBNC state in this yeast, we investigated its capacity to become viable and nonculturable after sulfite stress, and its ability to recover culturability after stressor removal. Sulfite addition induced loss of culturability but maintenance of viability. Increasing the medium pH to decrease the concentration of toxic SO(2) allowed yeast cells to become culturable again, thus demonstrating the occurrence of a VBNC state in Brettanomyces upon SO(2) exposure. Relative to culturable Brettanomyces, VBNC yeast cells were found to display a 22% decrease in size on the basis of laser granulometry. Assays for 4-ethylguaiacol and 4-ethylphenol, volatile phenols produced by Brettanomyces, indicated that spoilage compound production could persist in VBNC cells. These morphological and physiological changes in VBNC Brettanomyces were coupled to extensive protein pattern modifications, as inferred by comparative two-dimensional electrophoresis and mass spectrometric analyses. Upon identification of 53 proteins out of the 168 spots whose abundance was significantly modified in treated cells relative to control, we propose that the SO(2)-induced VBNC state in Brettanomyces is characterized by a reduced glycolytic flux coupled to changes in redox homeostatis/protein turnover-related processes. This study points out the existence of common mechanisms between yeast and bacteria upon entry to the VBNC state.
Journal of Industrial Microbiology & Biotechnology | 2001
Hervé Alexandre; D Heintz; David Chassagne; Michèle Guilloux-Benatier; Claudine Charpentier; Michel Feuillat
Determination of protease A activity during alcoholic fermentation of a synthetic must (pH 3.5 at 25°C) and during autolysis showed that a sixfold induction of protease A activity occurred after sugar exhaustion, well before 100% cell death occurred. A decrease in protease A activity was observed when yeast cell autolysis started. Extracellular protease A activity was detected late in the autolysis process, which suggests that protease A is not easily released. Evolution of amino acids and peptides was determined during alcoholic fermentation and during autolysis. Amino acids were released in early stationary phase. These amino acids were subsequently assimilated during the fermentation. The same pattern was observed for peptides; this has never been reported previously. During autolysis, the concentration of amino acids and peptides increased to reach a maximum of 20 and 40 mg N l−1, respectively. This study supports the idea that although protease A activity seemed to be responsible for peptides release, there is no clear correlation among protease A activity, cell death, and autolysis. The amino acid composition of the peptides showed some variations between peptides released during alcoholic fermentation and during autolysis. Depending on aging time on yeast lees, the nature of the peptides present in the medium changed, which could lead to different organoleptic properties. Journal of Industrial Microbiology & Biotechnology (2001) 26, 235–240.
Fems Yeast Research | 2015
Isabelle Masneuf-Pomarede; Elodie Juquin; Cécile Miot-Sertier; Philippe Renault; Yec’han Laizet; Franck Salin; Hervé Alexandre; Vittorio Capozzi; Luca Cocolin; Benoit Colonna-Ceccaldi; Vasileios Englezos; Patrick Girard; Beatriz González; Albert Mas; Aspasia Nisiotou; Matthias Sipiczki; Giuseppe Spano; Chrysoula C. Tassou; Marina Bely; Warren Albertin
The yeast Candida zemplinina (Starmerella bacillaris) is frequently isolated from grape and wine environments. Its enological use in mixed fermentation with Saccharomyces cerevisiae has been extensively investigated these last few years, and several interesting features including low ethanol production, fructophily, glycerol and other metabolites production, have been described. In addition, molecular tools allowing the characterization of yeast populations have been developed, both at the inter- and intraspecific levels. However, most of these fingerprinting methods are not compatible with population genetics or ecological studies. In this work, we developed 10 microsatellite markers for the C. zemplinina species that were used for the genotyping of 163 strains from nature or various enological regions (28 vineyards/wineries from seven countries). We show that the genetic diversity of C. zemplinina is shaped by geographical localization. Populations isolated from winemaking environments are quite diverse at the genetic level: neither clonal-like behaviour nor specific genetic signature were associated with the different vineyards/wineries. Altogether, these results suggest that C. zemplinina is not under selective pressure in winemaking environments.
Fems Microbiology Letters | 2010
Camelia Diguta; Sandrine Rousseaux; Stéphanie Weidmann; Nicolas Bretin; Béatrice Vincent; Michèle Guilloux-Benatier; Hervé Alexandre
The aim of this study was to develop a system for rapid and accurate real-time quantitative PCR (qPCR) identification and quantification of Botrytis cinerea, one of the major pathogens present on grapes. The intergenic spacer (IGS) region of the nuclear ribosomal DNA was used to specifically detect and quantify B. cinerea. A standard curve was established to quantify this fungus. The qPCR reaction was based on the simultaneous detection of a specific IGS sequence and also contained an internal amplification control to compensate for variations in DNA extraction and the various compounds from grapes that inhibit PCR. In these conditions, the assay had high efficiency (97%), and the limit of detection was estimated to be 6.3 pg DNA (corresponding to 540 spores). Our method was applied to assess the effects of various treatment strategies against Botrytis in the vineyard. Our qPCR assay proved to be rapid, selective and sensitive and may be used to monitor Botrytis infection in vineyards.
Microbiology | 1998
Hervé Alexandre; Lucile Plourde; Claudine Charpentier; Jean François
A pma1-1 mutant of Saccharomyces cerevisiae with reduced H(+)-ATPase activity and the isogenic wild-type strain accumulated high levels of trehalose in response to a temperature upshift to 40 degrees C and after addition of 10% ethanol, but only modest levels in response to a rapid drop in external pH and after addition of decanoic acid. There was, however, no correlation between the absolute levels of trehalose in the stressed cells and their viability. All these treatments induced a significant decrease in intracellular pH, and surprisingly, this decrease was very similar in both strains, indicating that intracellular acidification could not be the triggering mechanism for trehalose accumulation in response to stress. A careful investigation of metabolic parameters was carried out to explain how trehalose accumulated under the four different stress conditions tested. No single and common mechanism for trehalose accumulation could be put forward and the transcriptional activation of TPS1 was not unequivocally related to trehalose accumulation. Another finding was that a pma1-1 mutant exhibited a two- to threefold greater capacity to accumulate trehalose than the isogenic wild-type. This enhanced disaccharide synthesis could be attributed to a twofold higher trehalose-6-phosphate synthase activity, together with a fourfold higher content of intracellular UDP-Glc. In addition, this mutant showed 1.5-fold higher levels of ATP compared to the wild-type. The various stress treatments studied showed that a drop in intracellular pH does not correlate with trehalose accumulation. It is suggested that plasma membrane alteration could be the physiological trigger inducing trehalose accumulation in yeast.