Hervé Degand
Université catholique de Louvain
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hervé Degand.
The Plant Cell | 2001
Michal Jasinski; Yvan Stukkens; Hervé Degand; Bénédicte Purnelle; Jacqueline Marchand-Brynaert; Marc Boutry
ATP binding cassette (ABC) transporters, which are found in all species, are known mainly for their ability to confer drug resistance. To date, most of the ABC transporters characterized in plants have been localized in the vacuolar membrane and are considered to be involved in the intracellular sequestration of cytotoxins. Working on the assumption that certain ABC transporters might be involved in defense metabolite secretion and their expression might be regulated by the concentration of these metabolites, we treated a Nicotiana plumbaginifolia cell culture with sclareolide, a close analog of sclareol, an antifungal diterpene produced at the leaf surface of Nicotiana spp; this resulted in the appearance of a 160-kD plasma membrane protein, which was partially sequenced. The corresponding cDNA (NpABC1) was cloned and shown to encode an ABC transporter. In vitro and in situ immunodetection showed NpABC1 to be localized in the plasma membrane. Under normal conditions, expression was found in the leaf epidermis. In cell culture and in leaf tissues, NpABC1 expression was strongly enhanced by sclareolide and sclareol. In parallel with NpABC1 induction, cells acquired the ability to excrete a labeled synthetic sclareolide derivative. These data suggest that NpABC1 is involved in the secretion of a secondary metabolite that plays a role in plant defense.
The Plant Cell | 2012
Pierre Galka; Stefano Santabarbara; Thi Thu Khuong Khuong; Hervé Degand; Pierre Morsomme; Robert C. Jennings; Egbert J. Boekema; Stefano Caffarri
State transitions are a photosynthetic response that allows energy distribution balancing between photosystems. Here, a stable PSI-LHCII supercomplex is purified, and it is demonstrated that LHCIIs loosely bound to PSII in State I are the trimers mainly involved in state transitions. Mobile trimers become strongly bound to PSI in State II, and excitation energy transfer to PSI is fast and efficient. State transitions are an important photosynthetic short-term response that allows energy distribution balancing between photosystems I (PSI) and II (PSII). In plants when PSII is preferentially excited compared with PSI (State II), part of the major light-harvesting complex LHCII migrates to PSI to form a PSI-LHCII supercomplex. So far, little is known about this complex, mainly due to purification problems. Here, a stable PSI-LHCII supercomplex is purified from Arabidopsis thaliana and maize (Zea mays) plants. It is demonstrated that LHCIIs loosely bound to PSII in State I are the trimers mainly involved in state transitions and become strongly bound to PSI in State II. Specific Lhcb1-3 isoforms are differently represented in the mobile LHCII compared with S and M trimers. Fluorescence analyses indicate that excitation energy migration from mobile LHCII to PSI is rapid and efficient, and the quantum yield of photochemical conversion of PSI-LHCII is substantially unaffected with respect to PSI, despite a sizable increase of the antenna size. An updated PSI-LHCII structural model suggests that the low-energy chlorophylls 611 and 612 in LHCII interact with the chlorophyll 11145 at the interface of PSI. In contrast with the common opinion, we suggest that the mobile pool of LHCII may be considered an intimate part of the PSI antenna system that is displaced to PSII in State I.
Plant and Cell Physiology | 2008
Valérie Van Wilder; Urszula Miecielica; Hervé Degand; Rita Derua; Etienne Waelkens; François Chaumont
Aquaporins are channel proteins that facilitate transmembrane water movement. In this study, we showed that plasma membrane intrinsic proteins (PIPs) from maize shoots are in vitro and in vivo phosphorylated on serine residues by a calcium-dependent kinase associated with the membrane fraction. Mass spectrometry identified phosphorylated peptides corresponding to the C-terminal region of (i) ZmPIP2;1, ZmPIP2;2 and/or ZmPIP2;7; (ii) ZmPIP2;3 and/or ZmPIP2;4; (iii) ZmPIP2;6; together with (iv) a phosphorylated peptide located in the N-terminal region of ZmPIP1;1, ZmPIP1;2, ZmPIP1;3 and/or ZmPIP1;4. The role of phosphorylation in the water channel activity of wild-type and mutant ZmPIP2;1 was studied in Xenopus laevis oocytes. Activation of endogenous protein kinase A increased the osmotic water permeability coefficient of ZmPIP2;1-expressing oocytes, suggesting that phosphorylation activates its channel activity. Mutation of S126 or S203, putative phosphorylated serine residues conserved in all plant PIPs, to alanine decreased ZmPIP2;1 activity by 30-50%, without affecting its targeting to the plasma membrane. Mutation of S285, which is phosphorylated in planta, to alanine or glutamate did not affect the water channel activity. These results indicate that, in oocytes, S126 and S203 play an important role in ZmPIP2;1 activity and that phosphorylation of S285 is not required for its activity.
Archives of Biochemistry and Biophysics | 2009
Dominique Linard; Andrea Kandlbinder; Hervé Degand; Pierre Morsomme; Karl-Josef Dietz; Bernard Knoops
Mitochondria are metabolically highly active cell organelles that are also implicated in reactive oxygen species production and in cell death regulation. Cyclophilin D, the only human mitochondrial isoform of cyclophilins, plays an essential role in the formation of the mitochondrial permeability transition pore leading to cell necrosis. Recently, it has been shown that redox environment modifies structural and functional properties of some plant cyclophilins. Here, it is shown that oxidation of human cyclophilin D influences the conformation of the enzyme but also its activity. Site-directed mutagenized variants of cyclophilin D allowed the identification of cysteine 203 as an important redox-sensitive residue. Moreover, the redox modulation of cyclophilin D was confirmed in human neuroblastoma SH-SY5Y cells exposed to oxidative stress. Altogether, our results suggest that cyclophilin D may play a role as a redox sensor in mitochondria of mammalian cells transmitting information on the redox environment to target proteins.
Proteomics | 2002
Catherine Navarre; Hervé Degand; Keiryn L. Bennett; Janne S. Crawford; Ejvind Mørtz; Marc Boutry
As a consequence of their poor solubility during isoelectric focusing, integral membrane proteins are generally absent from two‐dimensional gel proteome maps. In order to analyze the yeast plasma membrane proteome, a plasma membrane purification protocol was optimized in order to reduce contaminating membranes and cytosolic proteins. Specifically, the new fractionation scheme largely depleted the plasma membrane fraction of cytosolic proteins by deoxycholate stripping and ribosomal proteins by sucrose gradient flotation. The plasma membrane complement was resolved by two‐dimensional electrophoresis using the cationic detergent cetyl trimethyl ammonium bromide in the first, and sodium dodecyl sulfate in the second dimension, and fifty spots were identified by matrix‐assisted laser desorption/ionization‐time of flight mass spectometry. In spite of the presence of still contaminating ribosomal proteins, major proteins corresponded to known plasma membrane residents, the ABC transporters Pdr5p and Snq2p, the P‐type H+‐ATPase Pma1p, the glucose transporter Hxt7p, the seven transmembrane‐span Mrh1p, the low affinity Fe++ transporter Fet4p, the twelve‐span Ptr2p, and the plasma membrane anchored casein kinase Yck2p. The four transmembrane‐span proteins Sur7p and Nce102p were also present in the isolated plasma membranes, as well as the unknown protein Ygr266wp that probably contains a single transmembrane span. Thus, combining subcellular fractionation with adapted two‐dimensional electrophoresis resulted in the identification of intrinsic plasma membrane proteins.
The Plant Cell | 2014
Charles Hachez; Timothée Laloux; Hagen Reinhardt; Damien Cavez; Hervé Degand; Christopher Grefen; Riet De Rycke; Dirk Inzé; Michael R. Blatt; Eugenia Russinova; François Chaumont
This work shows that the post-Golgi trafficking of PIP2;7 involves an interaction with SYP61 and SYP121 and that SYP61 and SYP121 colocalize and are physically associated in a SNARE complex. These findings suggest that SNAREs, and possibly a SYP61/SYP121 SNARE complex, play an important role in the regulation of the transport of the plasma membrane aquaporin. Plant plasma membrane intrinsic proteins (PIPs) are aquaporins that facilitate the passive movement of water and small neutral solutes through biological membranes. Here, we report that post-Golgi trafficking of PIP2;7 in Arabidopsis thaliana involves specific interactions with two syntaxin proteins, namely, the Qc-SNARE SYP61 and the Qa-SNARE SYP121, that the proper delivery of PIP2;7 to the plasma membrane depends on the activity of the two SNAREs, and that the SNAREs colocalize and physically interact. These findings are indicative of an important role for SYP61 and SYP121, possibly forming a SNARE complex. Our data support a model in which direct interactions between specific SNARE proteins and PIP aquaporins modulate their post-Golgi trafficking and thus contribute to the fine-tuning of the water permeability of the plasma membrane.
Proteomics | 2011
Emmanuel Van Cutsem; Géraldine Simonart; Hervé Degand; Anne-Marie Faber; Pierre Morsomme; Marc Boutry
Nicotiana tabacum leaves are covered by trichomes involved in the secretion of large amounts of secondary metabolites, some of which play a major role in plant defense. However, little is known about the metabolic pathways that operate in these structures. We undertook a proteomic analysis of N. tabacum trichomes in order to identify their protein complement. Efficient trichome isolation was obtained by abrading frozen leaves. After homogenization, soluble proteins and a microsomal fraction were prepared by centrifugation. Gel‐based and gel‐free proteomic analyses were then performed. 2‐DE analysis of soluble proteins led to the identification of 1373 protein spots, which were digested and analyzed by MS/MS, leading to 680 unique identifications. Both soluble proteins and microsomal fraction were analyzed by LC MALDI‐MS/MS after trypsin digestion, leading to 858 identifications, many of which had not been identified after 2‐DE, indicating that the two methods complement each other. Many enzymes putatively involved in secondary metabolism were identified, including enzymes involved in the synthesis of terpenoid precursors and in acyl sugar production. Several transporters were also identified, some of which might be involved in secondary metabolite transport. Various (a)biotic stress response proteins were also detected, supporting the role of trichomes in plant defense.
Molecular Biology and Evolution | 2010
Marie Lapaille; Adelma Escobar-Ramírez; Hervé Degand; Denis Baurain; Elizabeth Rodríguez-Salinas; Nadine Coosemans; Marc Boutry; Diego González-Halphen; Claire Remacle; Pierre Cardol
In yeast, mammals, and land plants, mitochondrial F(1)F(O)-ATP synthase (complex V) is a remarkable enzymatic machinery that comprises about 15 conserved subunits. Peculiar among eukaryotes, complex V from Chlamydomonadales algae (order of chlorophycean class) has an atypical subunit composition of its peripheral stator and dimerization module, with nine subunits of unknown evolutionary origin (Asa subunits). In vitro, this enzyme exhibits an increased stability of its dimeric form, and in vivo, Chlamydomonas reinhardtii cells are insensitive to oligomycins, which are potent inhibitors of proton translocation through the F(O) moiety. In this work, we showed that the atypical features of the Chlamydomonadales complex V enzyme are shared by the other chlorophycean orders. By biochemical and in silico analyses, we detected several atypical Asa subunits in Scenedesmus obliquus (Sphaeropleales) and Chlorococcum ellipsoideum (Chlorococcales). In contrast, complex V has a canonical subunit composition in other classes of Chlorophytes (Trebouxiophyceae, Prasinophyceae, and Ulvophyceae) as well as in Streptophytes (land plants), and in Rhodophytes (red algae). Growth, respiration, and ATP levels in Chlorophyceae were also barely affected by oligomycin concentrations that affect representatives of the other classes of Chlorophytes. We finally studied the function of the Asa7 atypical subunit by using RNA interference in C. reinhardtii. Although the loss of Asa7 subunit has no impact on cell bioenergetics or mitochondrial structures, it destabilizes in vitro the enzyme dimeric form and renders growth, respiration, and ATP level sensitive to oligomycins. Altogether, our results suggest that the loss of canonical components of the complex V stator happened at the root of chlorophycean lineage and was accompanied by the recruitment of novel polypeptides. Such a massive modification of complex V stator features might have conferred novel properties, including the stabilization of the enzyme dimeric form and the shielding of the proton channel. In these respects, we discuss an evolutionary scenario for F(1)F(O)-ATP synthase in the whole green lineage (i.e., Chlorophyta and Streptophyta).
Proteomics | 2009
Hervé Degand; Anne-Marie Faber; Nicolas Dauchot; Dominique Mingeot; Bernard Watillon; Pierre Van Cutsem; Pierre Morsomme; Marc Boutry
Chicory (Cichorium intybus) roots contain high amounts of inulin, a fructose polymer used as a storage carbohydrate by the plant and as a human dietary and prebiotic compound. We performed 2‐D electrophoretic analysis of proteins from root material before the first freezing period. The proteins were digested with trypsin and the peptides analyzed by MS (MALDI‐TOF/TOF). From the 881 protein spots analyzed, 714 proteins corresponded to a database accession, 619 of which were classified into functional categories. Besides expected proteins (e.g. related to metabolism, energy, protein synthesis, or cell structure), other well‐represented categories were proteins related to folding and stability (49 spots), proteolysis (49 spots), and the stress response (67 spots). The importance of abiotic stress response was confirmed by the observation that 7 of the 21 most intense protein spots are known to be involved in cold acclimation. These results suggest a major effect of the low temperature period that preceded root harvesting.
ACS Chemical Biology | 2010
Geneviève Deschuyteneer; Stéphanie Garcia; Benjamin Michiels; Bruno Baudoux; Hervé Degand; Pierre Morsomme; Patrice Soumillion
Split-inteins can be used to generate backbone cyclized peptide as a source of new bioactive molecules. In this work we show that cysteine-mediated splicing can be performed in the oxidative environment of the periplasm of Escherichia coli. Cyclization of the TEM-1 beta-lactamase and of small randomized peptides was demonstrated using an artificially permuted version of the DnaB mini-intein from Synechocystis sp. PCC6803 strain fused to a signal sequence. For small peptides, a signal sequence that promotes cotranslational translocation had to be used. Efficient backbone cyclization was observed for more than 50% of combinatorial peptides featuring a fully randomized sequence inserted between a serine and glycine that are necessary for fast splicing. Furthermore, by coexpressing a mutant of the pIV outer membrane pore protein of fd bacteriophage, we showed that peptides can diffuse in the extracellular medium. These results open new routes for searching compounds acting on new targets such as exported and membrane proteins or pathogen microorganisms.