Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hesham El Gamal is active.

Publication


Featured researches published by Hesham El Gamal.


IEEE Transactions on Mobile Computing | 2011

Cognitive Medium Access: Exploration, Exploitation, and Competition

Lifeng Lai; Hesham El Gamal; Hai Jiang; H. Vincent Poor

This paper considers the design of efficient strategies that allow cognitive users to choose frequency bands to sense and access among multiple bands with unknown parameters. First, the scenario in which a single cognitive user wishes to opportunistically exploit the availability of frequency bands is considered. By adopting tools from the classical bandit problem, optimal as well as low complexity asymptotically optimal solutions are developed. Next, the multiple cognitive user scenario is considered. The situation in which the availability probability of each channel is known is first considered. An optimal symmetric strategy that maximizes the total throughput of the cognitive users is developed. To avoid the possible selfish behavior of the cognitive users, a game-theoretic model is then developed. The performance of both models is characterized analytically. Then, the situation in which the availability probability of each channel is unknown a priori is considered. Low-complexity medium access protocols, which strike an optimal balance between exploration and exploitation in such competitive environments, are developed. The operating points of these low-complexity protocols are shown to converge to those of the scenario in which the availability probabilities are known. Finally, numerical results are provided to illustrate the impact of sensing errors and other practical considerations.


IEEE Transactions on Information Theory | 2006

The MIMO ARQ Channel: Diversity–Multiplexing–Delay Tradeoff

Hesham El Gamal; Giuseppe Caire; Mohamed Oussama Damen

In this paper, the fundamental performance tradeoff of the delay-limited multiple-input multiple-output (MIMO) automatic retransmission request (ARQ) channel is explored. In particular, we extend the diversity-multiplexing tradeoff investigated by Zheng and Tse in standard delay-limited MIMO channels with coherent detection to the ARQ scenario. We establish the three-dimensional tradeoff between reliability (i.e., diversity), throughput (i.e., multiplexing gain), and delay (i.e., maximum number of retransmissions). This tradeoff quantifies the ARQ diversity gain obtained by leveraging the retransmission delay to enhance the reliability for a given multiplexing gain. Interestingly, ARQ diversity appears even in long-term static channels where all the retransmissions take place in the same channel state. Furthermore, by relaxing the input power constraint allowing variable power levels in different retransmissions, we show that power control can be used to dramatically increase the diversity advantage. Our analysis reveals some important insights on the benefits of ARQ in slow-fading MIMO channels. In particular, we show that 1) allowing for a sufficiently large retransmission delay results in an almost flat diversity-multiplexing tradeoff, and hence, renders operating at high multiplexing gain more advantageous; 2) MIMO ARQ channels quickly approach the ergodic limit when power control is employed. Finally, we complement our information-theoretic analysis with an incremental redundancy lattice space-time (IR-LAST) coding scheme which is shown, through a random coding argument, to achieve the optimal tradeoff(s). An integral component of the optimal IR-LAST coding scheme is a list decoder, based on the minimum mean-square error (MMSE) lattice decoding principle, for joint error detection and correction. Throughout the paper, our theoretical claims are validated by numerical results


IEEE Transactions on Information Theory | 2012

On Secrecy Capacity Scaling in Wireless Networks

Onur Ozan Koyluoglu; Can Emre Koksal; Hesham El Gamal

This paper studies the achievable secure rate per source-destination pair in wireless networks. First, a path loss model is considered, where the legitimate and eavesdropper nodes are assumed to be placed according to Poisson point processes with intensities λ and λe, respectively. It is shown that, as long as λe/λ = o((logn)-2), almost all of the nodes achieve a perfectly secure rate of Ω(1/√n) for the extended and dense network models. Therefore, under these assumptions, securing the network does not entail a loss in the per-node throughput. The achievability argument is based on a novel multihop forwarding scheme where randomization is added in every hop to ensure maximal ambiguity at the eavesdropper(s). Second, an ergodic fading model with n source-destination pairs and ne eavesdroppers is considered. Employing the ergodic interference alignment scheme with an appropriate secrecy precoding, each user is shown to achieve a constant positive secret rate for sufficiently large n. Remarkably, the scheme does not require eavesdropper CSI (only the statistical knowledge is assumed) and the secure throughput per node increases as we add more legitimate users to the network in this setting. Finally, the effect of eavesdropper collusion on the performance of the proposed schemes is characterized.


personal, indoor and mobile radio communications | 2010

Polar coding for secure transmission and key agreement

Onur Ozan Koyluoglu; Hesham El Gamal

Wyners work on wiretap channels and the recent works on information theoretic security are based on random codes. Achieving information theoretical security with practical coding schemes is of definite interest. In this note, the attempt is to overcome this elusive task by employing the polar coding technique of Arikan. It is shown that polar codes achieve nontrivial perfect secrecy rates for binary-input degraded wiretap channels while enjoying their low encoding-decoding complexity. In the special case of symmetric main and eavesdropper channels, this coding technique achieves the secrecy capacity. Next, fading erasure wiretap channels are considered and a secret key agreement scheme is proposed, which requires only the statistical knowledge of the eavesdropper channel state information (CSI). The enabling factor is the creation of advantage over Eve, by blindly using the proposed scheme over each fading block, which is then exploited with privacy amplification techniques to generate secret keys.


IEEE Journal on Selected Areas in Communications | 2004

Correlated sources over wireless channels: cooperative source-channel coding

Arul D. Murugan; Praveen Kumar Gopala; Hesham El Gamal

We consider wireless sensor networks deployed to observe arbitrary random fields. The requirement is to reconstruct an estimate of the random field at a certain collector node. This creates a many-to-one data gathering wireless channel. One of the main challenges in this scenario is that the source/channel separation theorem, proved by Shannon for point-to-point links, does not hold any more. In this paper, we construct novel cooperative source-channel coding schemes that exploit the wireless channel and the correlation between the sources. In particular, we differentiate between two distinct cases. The first case assumes that the sensor nodes are equipped with receivers and, hence, every node can exploit the wireless link to distribute its information to its neighbors. We then devise an efficient deterministic cooperation strategy where the neighboring nodes act as virtual antennas in a beamforming configuration. The second, and more challenging, scenario restricts the capability of sensor nodes to transmit only. In this case, we argue that statistical cooperative source-channel coding techniques still yield significant performance gains in certain relevant scenarios. Specifically, we propose a low complexity cooperative source-channel coding scheme based on the proper use of low-density generator matrix codes. This scheme is shown to outperform the recently proposed joint source-channel coding scheme (Garcia-Frias et al., 2002) in the case of highly correlated sources. In both the deterministic and statistical cooperation scenarios, we develop analytical results that guide the optimization of the proposed schemes and validate the performance gains observed in simulations.


IEEE Transactions on Information Theory | 2013

Proactive Resource Allocation: Harnessing the Diversity and Multicast Gains

John Tadrous; Atilla Eryilmaz; Hesham El Gamal

This paper introduces the novel concept of proactive resource allocation for wireless networks, through which the predictability of user behavior is exploited to balance the wireless traffic over time, and significantly reduces the bandwidth required to achieve a given blocking/outage probability. We start with a simple model in which smart wireless devices are assumed to predict the arrival of new requests and submit them to the network time slots in advance. Using tools from large deviation theory, we quantify the resulting prediction diversity gain to establish that the decay rate of the outage event probabilities increases with the prediction duration . Remarkably, we also show that, in the cognitive networking scenario, the appropriate use of proactive resource allocation by primary users improves the diversity gain of the secondary network at no cost in the primary network diversity. We also shed light on multicasting with predictable demands and show that proactive multicast networks can achieve a significantly higher diversity gain that scales superlinearly with . Finally, we conclude by a discussion of the new research questions posed under the umbrella of the proposed proactive wireless resource framework.


information theory and applications | 2010

On secrecy capacity scaling in wireless networks

Onur Ozan Koyluoglu; C. Emre Koksal; Hesham El Gamal

This paper studies the achievable secure rate per source-destination pair in wireless networks. First, a path loss model is considered, where the legitimate and eavesdropper nodes are assumed to be placed according to Poisson point processes with intensities λ and λe, respectively. It is shown that, as long as λe/λ = o((logn)-2), almost all of the nodes achieve a perfectly secure rate of Ω(1/√n) for the extended and dense network models. Therefore, under these assumptions, securing the network does not entail a loss in the per-node throughput. The achievability argument is based on a novel multihop forwarding scheme where randomization is added in every hop to ensure maximal ambiguity at the eavesdropper(s). Second, an ergodic fading model with n source-destination pairs and ne eavesdroppers is considered. Employing the ergodic interference alignment scheme with an appropriate secrecy precoding, each user is shown to achieve a constant positive secret rate for sufficiently large n. Remarkably, the scheme does not require eavesdropper CSI (only the statistical knowledge is assumed) and the secure throughput per node increases as we add more legitimate users to the network in this setting. Finally, the effect of eavesdropper collusion on the performance of the proposed schemes is characterized.


international symposium on information theory | 2009

The MIMO Wireless Switch: Relaying can increase the multiplexing gain

Hassan Ghozlan; Yahya Mohasseb; Hesham El Gamal; Gerhard Kramer

This paper considers an interference network composed of K half-duplex single-antenna pairs of users who wish to establish bi-directional communication with the aid of a multi-input-multi-output (MIMO) half-duplex relay node. This channel is referred to as the “MIMO Wireless Switch” since, for the sake of simplicity, our model assumes no direct link between the two end nodes of each pair implying that all communication must go through the relay node (i.e., the MIMO switch). Assuming a delay-limited scenario, the fundamental limits in the high signal-to-noise ratio (SNR) regime is analyzed using the diversity-multiplexing tradeoff (DMT) framework. Our results sheds light on the structure of optimal transmission schemes and the gain offered by the relay node in two distinct cases, namely reciprocal and non-reciprocal channels (between the relay and end-users). In particular, the existence of a relay node, equipped with a sufficient number of antennas, is shown to increase the multiplexing gain; as compared with the traditional fully connected K-pair interference channel. To the best of our knowledge, this is the first known example where adding a relay node results in enlarging the pre-log factor of the sum rate. Moreover, for the case of reciprocal channels, it is shown that, when the relay has a number of antennas at least equal to the sum of antennas of all the users, static time allocation of decode and forward (DF) type schemes is optimal. On the other hand, in the non-reciprocal scenario, we establish the optimality of dynamic decode and forward in certain relevant scenarios.


international symposium on information theory | 2009

On the delay limited secrecy capacity of fading channels

Karim Khalil; Moustafa Youssef; Onur Ozan Koyluoglu; Hesham El Gamal

In this paper, the delay limited secrecy capacity of the flat fading channel is investigated under two different assumptions on the available transmitter channel state information (CSI). The first scenario assumes perfect prior knowledge of both the main and eavesdropper channel gains. Here, upper and lower bounds on the secure delay limited capacity are derived and shown to be tight in the high signal-to-noise ratio (SNR) regime (for a wide class of channel distributions). In the second scenario, only the main channel CSI is assumed to be available at the transmitter. Remarkably, under this assumption, we establish the achievability of non-zero secure rate (for a wide class of channel distributions) under a strict delay constraint. In the two cases, our achievability arguments are based on a novel twostage approach that overcomes the secrecy outage phenomenon observed in earlier works.


allerton conference on communication, control, and computing | 2010

Proactive resource allocation: Turning predictable behavior into spectral gain

Hesham El Gamal; John Tadrous; Atilla Eryilmaz

This paper introduces the novel concept of proactive resource allocation in which the predictability of user behavior is exploited to balance the wireless traffic over time, and hence, significantly reduce the bandwidth required to achieve a given blocking/outage probability. We start with a simple model in which the smart wireless devices are assumed to predict the arrival of new requests and submit them to the network T time slots in advance. Using tools from large deviation theory, we quantify the resulting prediction diversity gain to establish that the decay rate of the outage event probabilities increases linearly with the prediction duration T. This model is then generalized to incorporate the effect of prediction errors and the randomness in the prediction lookahead time T. Remarkably, we also show that, in the cognitive networking scenario, the appropriate use of proactive resource allocation by the primary users results in more spectral opportunities for the secondary users at a marginal, or no, cost in the primary network outage. Finally, we conclude by a discussion of the new research questions posed under the umbrella of the proposed proactive (non-causal) wireless networking framework.

Collaboration


Dive into the Hesham El Gamal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moustafa Youssef

Egypt-Japan University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge