Onur Ozan Koyluoglu
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Onur Ozan Koyluoglu.
IEEE Transactions on Information Theory | 2014
Ankit Singh Rawat; Onur Ozan Koyluoglu; Natalia Silberstein; Sriram Vishwanath
This paper aims to go beyond resilience into the study of security and local-repairability for distributed storage systems (DSSs). Security and local-repairability are both important as features of an efficient storage system, and this paper aims to understand the trade-offs between resilience, security, and local-repairability in these systems. In particular, this paper first investigates security in the presence of colluding eavesdroppers, where eavesdroppers are assumed to work together in decoding the stored information. Second, this paper focuses on coding schemes that enable optimal local repairs. It further brings these two concepts together to develop locally repairable coding schemes for DSS that are secure against eavesdroppers. The main results of this paper include: 1) an improved bound on the secrecy capacity for minimum storage regenerating codes; 2) secure coding schemes that achieve the bound for some special cases; 3) a new bound on minimum distance for locally repairable codes; 4) code construction for locally repairable codes that attain the minimum distance bound; and 5) repair-bandwidth-efficient locally repairable codes with and without security constraints.
IEEE Transactions on Information Theory | 2011
Onur Ozan Koyluoglu; H. El Gamal; Lifeng Lai; H.V. Poor
This paper studies the frequency/time selective K-user Gaussian interference channel with secrecy constraints. Two distinct models, namely the interference channel with confidential messages and the interference channel with an external eavesdropper, are analyzed. The key difference between the two models is the lack of channel state information (CSI) of the external eavesdropper. Using interference alignment along with secrecy precoding, it is shown that each user can achieve non-zero secure degrees of freedom (DoF) for both cases. More precisely, the proposed coding scheme achieves [(K-2)/(2K-2)] secure DoF with probability one per user in the confidential messages model. For the external eavesdropper scenario, on the other hand, it is shown that each user can achieve [(K-2)/(2K)] secure DoF in the ergodic setting. Remarkably, these results establish the positive impact of interference on the secrecy capacity region of wireless networks.
IEEE Transactions on Information Theory | 2012
Onur Ozan Koyluoglu; Can Emre Koksal; Hesham El Gamal
This paper studies the achievable secure rate per source-destination pair in wireless networks. First, a path loss model is considered, where the legitimate and eavesdropper nodes are assumed to be placed according to Poisson point processes with intensities λ and λe, respectively. It is shown that, as long as λe/λ = o((logn)-2), almost all of the nodes achieve a perfectly secure rate of Ω(1/√n) for the extended and dense network models. Therefore, under these assumptions, securing the network does not entail a loss in the per-node throughput. The achievability argument is based on a novel multihop forwarding scheme where randomization is added in every hop to ensure maximal ambiguity at the eavesdropper(s). Second, an ergodic fading model with n source-destination pairs and ne eavesdroppers is considered. Employing the ergodic interference alignment scheme with an appropriate secrecy precoding, each user is shown to achieve a constant positive secret rate for sufficiently large n. Remarkably, the scheme does not require eavesdropper CSI (only the statistical knowledge is assumed) and the secure throughput per node increases as we add more legitimate users to the network in this setting. Finally, the effect of eavesdropper collusion on the performance of the proposed schemes is characterized.
international symposium on information theory | 2013
Natalia Silberstein; Ankit Singh Rawat; Onur Ozan Koyluoglu; Sriram Vishwanath
This paper presents a new explicit construction for locally repairable codes (LRCs) for distributed storage systems which possess all-symbol locality and the largest possible minimum distance, or equivalently, can tolerate the maximum number of node failures. This construction, based on maximum rank distance (MRD) Gabidulin codes, provides new optimal vector and scalar LRCs. In addition, the paper also discusses mechanisms by which codes obtained using this construction can be used to construct LRCs with efficient local repair of failed nodes by combination of LRCs with regenerating codes.
IEEE Transactions on Information Theory | 2011
Onur Ozan Koyluoglu; H. El Gamal
This paper investigates the fundamental performance limits of the two-user interference channel in the presence of an external eavesdropper. In this setting, we construct an inner bound, to the secrecy capacity region, based on the idea of cooperative encoding in which the two users cooperatively design their randomized codebooks and jointly optimize their channel prefixing distributions. Our achievability scheme also utilizes message-splitting in order to allow for partial decoding of the interference at the nonintended receiver. Outer bounds are then derived and used to establish the optimality of the proposed scheme in certain cases. In the Gaussian case, the previously proposed cooperative jamming and noise-forwarding techniques are shown to be special cases of our proposed approach. Overall, our results provide structural insights on how the interference can be exploited to increase the secrecy capacity of wireless networks.
personal, indoor and mobile radio communications | 2010
Onur Ozan Koyluoglu; Hesham El Gamal
Wyners work on wiretap channels and the recent works on information theoretic security are based on random codes. Achieving information theoretical security with practical coding schemes is of definite interest. In this note, the attempt is to overcome this elusive task by employing the polar coding technique of Arikan. It is shown that polar codes achieve nontrivial perfect secrecy rates for binary-input degraded wiretap channels while enjoying their low encoding-decoding complexity. In the special case of symmetric main and eavesdropper channels, this coding technique achieves the secrecy capacity. Next, fading erasure wiretap channels are considered and a secret key agreement scheme is proposed, which requires only the statistical knowledge of the eavesdropper channel state information (CSI). The enabling factor is the creation of advantage over Eve, by blindly using the proposed scheme over each fading block, which is then exploited with privacy amplification techniques to generate secret keys.
information theory and applications | 2010
Onur Ozan Koyluoglu; C. Emre Koksal; Hesham El Gamal
This paper studies the achievable secure rate per source-destination pair in wireless networks. First, a path loss model is considered, where the legitimate and eavesdropper nodes are assumed to be placed according to Poisson point processes with intensities λ and λe, respectively. It is shown that, as long as λe/λ = o((logn)-2), almost all of the nodes achieve a perfectly secure rate of Ω(1/√n) for the extended and dense network models. Therefore, under these assumptions, securing the network does not entail a loss in the per-node throughput. The achievability argument is based on a novel multihop forwarding scheme where randomization is added in every hop to ensure maximal ambiguity at the eavesdropper(s). Second, an ergodic fading model with n source-destination pairs and ne eavesdroppers is considered. Employing the ergodic interference alignment scheme with an appropriate secrecy precoding, each user is shown to achieve a constant positive secret rate for sufficiently large n. Remarkably, the scheme does not require eavesdropper CSI (only the statistical knowledge is assumed) and the secure throughput per node increases as we add more legitimate users to the network in this setting. Finally, the effect of eavesdropper collusion on the performance of the proposed schemes is characterized.
IEEE Transactions on Information Forensics and Security | 2012
Onur Ozan Koyluoglu; H. El Gamal
Achieving information theoretic security with practical coding complexity is of definite interest. This work first focuses on the key agreement problem. For this problem, a new cross-layer secure coding protocol over block fading channels is proposed. The proposed scheme requires only the statistical knowledge about the eavesdropper channel state information (CSI), and, utilizing a privacy amplification technique, reduces the problem of key agreement to a provably secure coding problem per block. Focusing on this secure coding problem, it is shown that polar codes, introduced by Arikan, achieve nonzero perfect secrecy rates for the binary-input degraded wiretap channel while enjoying a remarkably low encoding-decoding complexity. We further show that, in the special case of symmetric main and eavesdropper channels, this coding technique achieves the secrecy capacity. This approach is also extended to the multiple-access channel with a degraded eavesdropper where a nontrivial achievable secrecy region is established. This polar coding method is then utilized in the proposed key agreement protocol, where the secure coding per block is used to create an advantage for the legitimate nodes over the eavesdropper, which is then turned into a private key via the privacy amplification module.
international symposium on information theory | 2013
Govinda M. Kamath; Natalia Silberstein; N. Prakash; Ankit Singh Rawat; V. Lalitha; Onur Ozan Koyluoglu; P. Vijay Kumar; Sriram Vishwanath
Node failures are inevitable in distributed storage systems (DSS). To enable efficient repair when faced with such failures, two main techniques are known: Regenerating codes, i.e., codes that minimize the total repair bandwidth; and codes with locality, which minimize the number of nodes participating in the repair process. This paper focuses on regenerating codes with locality, using pre-coding based on Gabidulin codes, and presents constructions that utilize minimum bandwidth regenerating (MBR) local codes. The constructions achieve maximum resilience (i.e., optimal minimum distance) and have maximum capacity (i.e., maximum rate). Finally, the same pre-coding mechanism can be combined with a subclass of fractional-repetition codes to enable maximum resilience and repair-by-transfer simultaneously.
international symposium on information theory | 2008
Onur Ozan Koyluoglu; H. El Gamal; Lifeng Lai; H.V. Poor
This paper studies the K-user Gaussian interference channel with secrecy constraints. Two distinct network models, namely the interference channel with confidential messages and the one with an external eavesdropper, are analyzed. Using interference alignment along with secrecy pre-coding at each transmitter, it is shown that each user in the network can achieve non-zero secure degrees of freedoms (DoFs) in both scenarios. In particular, the proposed coding scheme achieves K-2/2K-2 secure DoFs for each user in the interference channel with confidential messages model, and K-2/2K secure DoFs in the case of an external eavesdropper. The fundamental difference between the two scenarios stems from the lack of channel state information (CSI) about the external eavesdropper. Remarkably, the results establish the positive impact of interference on the secrecy capacity of wireless networks.