Hestia Mellert
Thomas Jefferson University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hestia Mellert.
Cancer Cell | 2010
Priya Aggarwal; Laura Pontano Vaites; Jong Kyong Kim; Hestia Mellert; Buddha Gurung; Hiroshi Nakagawa; Meenhard Herlyn; Xianxin Hua; Anil K. Rustgi; Steven B. McMahon; J. Alan Diehl
Cyclin D1 elicits transcriptional effects through inactivation of the retinoblastoma protein and direct association with transcriptional regulators. The current work reveals a molecular relationship between cyclin D1/CDK4 kinase and protein arginine methyltransferase 5 (PRMT5), an enzyme associated with histone methylation and transcriptional repression. Primary tumors of a mouse lymphoma model exhibit increased PRMT5 methyltransferase activity and histone arginine methylation. Analyses demonstrate that MEP50, a PRMT5 coregulatory factor, is a CDK4 substrate, and phosphorylation increases PRMT5/MEP50 activity. Increased PRMT5 activity mediates key events associated with cyclin D1-dependent neoplastic growth, including CUL4 repression, CDT1 overexpression, and DNA rereplication. Importantly, human cancers harboring mutations in Fbx4, the cyclin D1 E3 ligase, exhibit nuclear cyclin D1 accumulation and increased PRMT5 activity.
The EMBO Journal | 2012
Hua Yuan; Dorine Rossetto; Hestia Mellert; Weiwei Dang; Madhusudan Srinivasan; Jamel Johnson; Santosh Hodawadekar; Emily Chen Ding; Kaye D. Speicher; Nebiyu Abshiru; Rocco Perry; Jiang Wu; Chao Yang; Y. George Zheng; David W. Speicher; Pierre Thibault; Alain Verreault; F. Bradley Johnson; Shelley L. Berger; Rolf Sternglanz; Steven B. McMahon; Jacques Côté; Ronen Marmorstein
The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell‐cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X‐ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1‐K262 and hMOF‐K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases.
Molecular Cell | 2011
Céline Charvet; Manuela Wissler; Prisca Brauns-Schubert; Shang-Jui Wang; Yi Tang; Florian Christoph Sigloch; Hestia Mellert; Martin Brandenburg; Silke E. Lindner; Bernhard Breit; Douglas R. Green; Steven B. McMahon; Christoph Borner; Wei Gu; Ulrich Maurer
Activation of p53 by DNA damage results in either cell-cycle arrest, allowing DNA repair and cell survival, or induction of apoptosis. As these opposite outcomes are both mediated by p53 stabilization, additional mechanisms to determine this decision must exist. Here, we show that glycogen synthase kinase-3 (GSK-3) is required for the p53-mediated induction of the proapoptotic BH3 only-protein PUMA, an essential mediator of p53-induced apoptosis. Inhibition of GSK-3 protected from cell death induced by DNA damage and promoted increased long-term cell survival. We demonstrate that GSK-3 phosphorylates serine 86 of the p53-acetyltransferase Tip60. A Tip60(S86A) mutant was less active to induce p53 K120 acetylation, histone 4 acetylation, and expression of PUMA. Our data suggest that GSK-3 mediated Tip60S86 phosphorylation provides a link between PI3K signaling and the choice for or against apoptosis induction by p53.
Trends in Biochemical Sciences | 2009
Hestia Mellert; Steven B. McMahon
Protein phosphorylation is regulated dynamically in eukaryotic cells via modulation of the enzymatic activity of kinases and phosphatases. Like phosphorylation, acetylation has emerged as a critical regulatory protein modification that is altered dynamically in response to diverse cellular cues. Moreover, acetyltransferases and deacetylases are tightly linked to cellular signaling pathways. Recent studies provide clues about the mechanisms utilized to regulate acetyltransferases and deacetylases. The therapeutic value of deacetylase inhibitors suggests that understanding acetylation pathways will directly impact our ability to rationally target these enzymes in patients. Recently discovered mechanisms that directly regulate the catalytic activity of acetyltransferases and deacetylases provide exciting new insights about these enzymes.
Journal of Biological Chemistry | 2011
Hestia Mellert; Timothy J. Stanek; Stephen M. Sykes; Frank J. Rauscher; David C. Schultz; Steven B. McMahon
In unstressed cells, the p53 tumor suppressor is highly unstable. DNA damage and other forms of cellular stress rapidly stabilize and activate p53. This process is regulated by a complex array of post-translational modifications that are dynamically deposited onto p53. Recent studies show that these modifications orchestrate p53-mediated processes such as cell cycle arrest and apoptosis. Cancer cells carry inherent genetic damage, but avoid arrest and apoptosis by inactivating p53. Defining the enzymatic machinery that regulates the stress-induced modification of p53 at single-residue resolution is critical to our understanding of the biochemical mechanisms that control this critical tumor suppressor. Specifically, acetylation of p53 at lysine 120, a DNA-binding domain residue mutated in human cancer, is essential for triggering apoptosis. Given the oncogenic properties of deacetylases and the success of deacetylase inhibitors as anticancer agents, we investigated the regulation of Lys120 deacetylation using pharmacologic and genetic approaches. This analysis revealed that histone deacetylase 1 is predominantly responsible for the deacetylation of Lys120. Furthermore, treatment with the clinical-grade histone deacetylase inhibitor entinostat enhances Lys120 acetylation, an event that is mechanistically linked to its apoptotic effect. These data expand our understanding of the mechanisms controlling p53 function and suggest that regulation of p53 modification status at single-residue resolution by targeted therapeutics can selectively alter p53 pathway function. This knowledge may impact the rational application of deacetylase inhibitors in the treatment of human cancer.
Cell Cycle | 2007
Hestia Mellert; Stephen M. Sykes; Maureen E. Murphy; Steven B. McMahon
Stabilization of the p53 tumor suppressor is a critical event in the response to various forms of cellular stress. Two distinct signaling pathways are thought to lead to this stabilization, depending on the type of cellular stress encountered. Genotoxic stress, such as chromosomal breaks or lesions induced by chemotherapeutic agents, result in the activation of the well-characterized DNA damage response pathway. Conversely, cellular stress that results from the aberrant activation of oncogenes triggers p53 stabilization via the induction of the p19ARF pathway. While activation of the DNA damage pathway ultimately causes a complex array of post-translational modifications on p53, activation few if any modifications have been demonstrated to occur following activation of the p19ARF pathway. We and others have recently identified a novel modification on p53, acetylation of lysine 120 within the DNA binding domain. This acetylation event is eliminated by tumor-derived mutations in p53 and its presence is required for the tumor suppressor apoptotic function of p53. We demonstrate here that both the DNA damage response pathway and the p19ARF/oncogene stress pathway induce the acetylation of p53 at lysine 120.
Experimental Cell Research | 2011
Gaspare La Rocca; Bin Shi; Alessandra Audia; Giovanna Ferrari-Amorotti; Hestia Mellert; Bruno Calabretta; Steven B. McMahon; Laura Sepp-Lorenzino; Renato Baserga
MicroRNA145 (miR145), a tumor suppressor miR, has been reported to inhibit growth of human cancer cells, to induce differentiation and to cause apoptosis, all conditions that result in growth arrest. In order to clarify the functional effects of miR145, we have investigated its expression in diverse conditions and different cell lines. Our results show that miR145 levels definitely increase in differentiating cells and also in growth-arrested cells, even in the absence of differentiation. Increased expression during differentiation sometimes occurs as a late event, suggesting that miR145 could be required either early or late during the differentiation process.
Molecular Cell | 2009
Hestia Mellert; Steven B. McMahon
Dynamic lysine acetylation regulates proteins involved in diverse cellular processes, with individual enzymes often acetylating multiple substrates. Here, Li et al. (2009) show that the substrate specificity of hMOF/MYST1/KAT8 is controlled by differential interaction with two mutually exclusive partners.
Molecular and Cellular Biology | 2011
Xiao-yong Zhang; Harla K. Pfeiffer; Hestia Mellert; Timothy J. Stanek; Robyn T. Sussman; Alpana Kumari; Duonan Yu; Isidore Rigoutsos; Andrei Thomas-Tikhonenko; Hans E. Seidel; Lewis A. Chodosh; Graham Packham; Renato Baserga; Steven B. McMahon
ABSTRACT Aberrant MYC expression is a common oncogenic event in human cancer. Paradoxically, MYC can either drive cell cycle progression or induce apoptosis. The latent ability of MYC to induce apoptosis has been termed “intrinsic tumor suppressor activity,” and reactivating this apoptotic function in tumors is widely considered a valuable therapeutic goal. As a transcription factor, MYC controls the expression of many downstream targets, and for the majority of these, it remains unclear whether or not they play direct roles in MYC function. To identify the subset of genes specifically required for biological activity, we conducted a screen for functionally important MYC targets and identified BAG1, which encodes a prosurvival chaperone protein. Expression of BAG1 is regulated by MYC in both a mouse model of breast cancer and transformed human cells. Remarkably, BAG1 induction is essential for protecting cells from MYC-induced apoptosis. Ultimately, the synthetic lethality we have identified between MYC overexpression and BAG1 inhibition establishes a new pathway that might be exploited to reactivate the latent apoptotic potential of MYC as a cancer therapy.
Oncotarget | 2016
Amanda R. Oran; Clare M. Adams; Xiao-yong Zhang; Victoria Gennaro; Harla K. Pfeiffer; Hestia Mellert; Hans E. Seidel; Kirsten Mascioli; Jordan Kaplan; Mahmoud R. Gaballa; Chen Shen; Isidore Rigoutsos; Michael P. King; Justin Cotney; Jamie J. Arnold; Suresh D. Sharma; Ubaldo E. Martinez-Outschoorn; Christopher R. Vakoc; Lewis A. Chodosh; James E. Thompson; James E. Bradner; Craig E. Cameron; Gerald S. Shadel; Christine M. Eischen; Steven B. McMahon
Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitts Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors.