Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven B. McMahon is active.

Publication


Featured researches published by Steven B. McMahon.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction.

David R. Wise; Ralph J. DeBerardinis; Anthony Mancuso; Nabil Sayed; Xiao Yong Zhang; Harla K. Pfeiffer; Ilana Nissim; Evgueni Daikhin; Marc Yudkoff; Steven B. McMahon; Craig B. Thompson

Mammalian cells fuel their growth and proliferation through the catabolism of two main substrates: glucose and glutamine. Most of the remaining metabolites taken up by proliferating cells are not catabolized, but instead are used as building blocks during anabolic macromolecular synthesis. Investigations of phosphoinositol 3-kinase (PI3K) and its downstream effector AKT have confirmed that these oncogenes play a direct role in stimulating glucose uptake and metabolism, rendering the transformed cell addicted to glucose for the maintenance of survival. In contrast, less is known about the regulation of glutamine uptake and metabolism. Here, we report that the transcriptional regulatory properties of the oncogene Myc coordinate the expression of genes necessary for cells to engage in glutamine catabolism that exceeds the cellular requirement for protein and nucleotide biosynthesis. A consequence of this Myc-dependent glutaminolysis is the reprogramming of mitochondrial metabolism to depend on glutamine catabolism to sustain cellular viability and TCA cycle anapleurosis. The ability of Myc-expressing cells to engage in glutaminolysis does not depend on concomitant activation of PI3K or AKT. The stimulation of mitochondrial glutamine metabolism resulted in reduced glucose carbon entering the TCA cycle and a decreased contribution of glucose to the mitochondrial-dependent synthesis of phospholipids. These data suggest that oncogenic levels of Myc induce a transcriptional program that promotes glutaminolysis and triggers cellular addiction to glutamine as a bioenergetic substrate.


Cell | 1998

The Novel ATM-Related Protein TRRAP Is an Essential Cofactor for the c-Myc and E2F Oncoproteins

Steven B. McMahon; Heather A Van Buskirk; Kerri A Dugan; Terry D. Copeland; Michael D. Cole

The c-Myc and E2F transcription factors are among the most potent regulators of cell cycle progression in higher eukaryotes. This report describes the isolation of a novel, highly conserved 434 kDa protein, designated TRRAP, which interacts specifically with the c-Myc N terminus and has homology to the ATM/PI3-kinase family. TRRAP also interacts specifically with the E2F-1 transactivation domain. Expression of transdominant mutants of the TRRAP protein or antisense RNA blocks c-Myc- and E1A-mediated oncogenic transformation. These data suggest that TRRAP is an essential cofactor for both the c-Myc and E1A/E2F oncogenic transcription factor pathways.


Molecular and Cellular Biology | 2000

The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc.

Steven B. McMahon; Marcelo A. Wood; Michael D. Cole

ABSTRACT The c-Myc protein functions as a transcription factor to facilitate oncogenic transformation; however, the biochemical and genetic pathways leading to transformation remain undefined. We demonstrate here that the recently described c-Myc cofactor TRRAP recruits histone acetylase activity, which is catalyzed by the human GCN5 protein. Since c-Myc function is inhibited by recruitment of histone deacetylase activity through Mad family proteins, these opposing biochemical activities are likely to be responsible for the antagonistic biological effects of c-Myc and Mad on target genes and ultimately on cellular transformation.


The EMBO Journal | 2006

Myc influences global chromatin structure.

Paul S. Knoepfler; Xiao Yong Zhang; Pei Feng Cheng; Philip R. Gafken; Steven B. McMahon; Robert N. Eisenman

The family of myc proto‐oncogenes encodes transcription factors (c‐, N‐, and L‐Myc) that regulate cell growth and proliferation and are involved in the etiology of diverse cancers. Myc proteins are thought to function by binding and regulating specific target genes. Here we report that Myc proteins are required for the widespread maintenance of active chromatin. Disruption of N‐myc in neuronal progenitors and other cell types leads to nuclear condensation accompanied by large‐scale changes in histone modifications associated with chromatin inactivation, including hypoacetylation and altered methylation. These effects are largely reversed by exogenous Myc as well as by differentiation and are mimicked by the Myc antagonist Mad1. The first chromatin changes are evident within 6 h of Myc loss and lead to changes in chromatin structure. Myc widely influences chromatin in part through upregulation of the histone acetyltransferase GCN5. This study provides the first evidence for regulation of global chromatin structure by an oncoprotein and may explain the broad effects of Myc on cell behavior and tumorigenesis.


Oncogene | 1999

THE MYC ONCOPROTEIN : A CRITICAL EVALUATION OF TRANSACTIVATION AND TARGET GENE REGULATION

Michael D. Cole; Steven B. McMahon

Mutations which disrupt the regulation or expression level of the c-myc gene are among the most common found in human and animal cancers (reviewed in ref. Cole, 1986; Henriksson and Luscher, 1996; Marcu et al., 1992). Ectopic expression studies define numerous biological activities of the c-myc gene, including transformation, immortalization, blockage of cell differentiation and induction of apoptosis (Askew et al., 1991; Cole, 1986; Evan and Littlewood, 1993; Freytag et al., 1990; Henriksson and Luscher, 1996; Marcu et al., 1992). Furthermore, c-myc is required for efficient progression through the cell cycle (Goruppi et al., 1994; Prochownik et al., 1988; Yokoyama and Imamoto, 1987), although recent studies indicate that it is not absolutely essential (Mateyak et al., 1997). This fascinating array of biological activities makes the c-myc gene one of the most intriguing oncogenes and presents the challenging question of how a single gene can manifest so many different effects. The c-Myc protein exhibits sequence-specific DNA binding when dimerized with its partner Max, and DNA binding is mediated through the basic region, which recognizes the core sequence CACGTG (Berberich et al., 1992; Blackwell et al., 1993; Blackwood and Eisenman, 1991; Prendergast and Ziff, 1991; Prendergast et al., 1991), but exhibits somewhat higher affinity for the more extended sequence ACCACGTGGT (Berberich et al., 1992; Blackwell et al., 1993; Halazonetis and Kandil, 1991). There are three closely related Myc family proteins (c-Myc, N-Myc and L-Myc), each with documented oncogenic potential (Birrer et al., 1988; Schwab et al., 1985; Yancopoulos et al., 1985) and similar DNA binding properties (Mukherjee et al., 1992). For simplicity, we will use the term Myc to refer to all three proteins, but delineate any distinct activities where they apply. The goal of this review is to discuss Myc as a transcriptional activator and critically evaluate the evidence for the transactivation of specific target genes as direct downstream effectors. Since excellent comprehensive reviews on Myc have been published recently (Facchini and Penn, 1998; Henriksson and Luscher, 1996), we will focus on the latest observations that offer mechanistic insight into transactivation and oncogenic transformation.


Molecular Cell | 2000

An ATPase/Helicase Complex Is an Essential Cofactor for Oncogenic Transformation by c-Myc

Marcelo A. Wood; Steven B. McMahon; Michael D. Cole

The c-Myc transactivation domain was used to affinity purify tightly associated nuclear proteins. Two of these proteins were identified as TIP49 and a novel related protein called TIP48, both of which are highly conserved in evolution and contain ATPase/helicase motifs. TIP49 and TIP48 are complexed with c-Myc in vivo, and binding is dependent on a c-Myc domain essential for oncogenic activity. A missense mutation in the TIP49 ATPase motif acts as a dominant inhibitor of c-Myc oncogenic activity but does not inhibit normal cell growth, indicating that functional TIP49 protein is an essential mediator of c-Myc oncogenic transformation. The TIP49 and TIP48 ATPase/helicase proteins represent a novel class of cofactors recruited by transcriptional activation domains that function in diverse pathways.


Molecular Cell | 2008

The Putative Cancer Stem Cell Marker USP22 Is a Subunit of the Human SAGA Complex Required for Activated Transcription and Cell-Cycle Progression

Xiao-yong Zhang; Maya Varthi; Stephen M. Sykes; Charles Phillips; Claude C. Warzecha; Wenting Zhu; Anastasia Wyce; Alan W. Thorne; Shelley L. Berger; Steven B. McMahon

Polycomb genes encode critical regulators of both normal stem cells and cancer stem cells. A gene signature that includes Polycomb genes and additional genes coregulated with Polycomb genes was recently identified. The expression of this signature has been reported to identify tumors with the cancer stem cell phenotypes of aggressive growth, metastasis, and therapy resistance. Most members of this 11 gene signature encode proteins with well-defined roles in human cancer. However, the function of the signature member USP22 remains unknown. We report that USP22 is a previously uncharacterized subunit of the human SAGA transcriptional cofactor complex. Within SAGA, USP22 deubiquitylates histone H2B. Furthermore, USP22 is recruited to specific genes by activators such as the Myc oncoprotein, where it is required for transcription. In support of a functional role within the Polycomb/cancer stem cell signature, USP22 is required for appropriate progression through the cell cycle.


Molecular and Cellular Biology | 2004

The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60

Jagruti H. Patel; Yanping Du; Penny G. Ard; Charles Phillips; Beth Carella; Chi-Ju Chen; Carrie Rakowski; Chandrima Chatterjee; Paul M. Lieberman; William S. Lane; Gerd A. Blobel; Steven B. McMahon

ABSTRACT The c-MYC oncoprotein functions as a sequence-specific transcription factor. The ability of c-MYC to activate transcription relies in part on the recruitment of cofactor complexes containing the histone acetyltransferases mammalian GCN5 (mGCN5)/PCAF and TIP60. In addition to acetylating histones, these enzymes have been shown to acetylate other proteins involved in transcription, including sequence-specific transcription factors. This study was initiated in order to determine whether c-MYC is a direct substrate of mGCN5 and TIP60. We report here that mGCN5/PCAF and TIP60 acetylate c-MYC in vivo. By using nanoelectrospray tandem mass spectrometry to examine c-MYC purified from human cells, the major mGCN5-induced acetylation sites have been mapped. Acetylation of c-MYC by either mGCN5/PCAF or TIP60 results in a dramatic increase in protein stability. The data reported here suggest a conserved mechanism by which acetyltransferases regulate c-MYC function by altering its rate of degradation.


Oncogene | 2008

The p53 family and programmed cell death

E C Pietsch; Stephen M. Sykes; Steven B. McMahon; Maureen E. Murphy

The p53 tumor suppressor continues to hold distinction as the most frequently mutated gene in human cancer. The ability of p53 to induce programmed cell death, or apoptosis, of cells exposed to environmental or oncogenic stress constitutes a major pathway whereby p53 exerts its tumor suppressor function. In the past decade, we have discovered that p53 is not alone in its mission to destroy damaged or aberrantly proliferating cells: it has two homologs, p63 and p73, that in various cellular contexts and stresses contribute to this process. In this review, the mechanisms whereby p53, and in some cases p63 and p73, induce apoptosis are discussed. Other reviews have focused more extensively on the contribution of individual p53-regulated genes to apoptosis induction by this protein, whereas in this review, we focus more on those factors that mediate the decision between growth arrest and apoptosis by p53, p63 and p73, and on the post-translational modifications and protein–protein interactions that influence this decision.


Molecular Cell | 2002

Nuclear Receptor Function Requires a TFTC-Type Histone Acetyl Transferase Complex.

Junn Yanagisawa; Hirochika Kitagawa; Mitsuaki Yanagida; Osamu Wada; Satoko Ogawa; Madoka Nakagomi; Hajime Oishi; Yasuji Yamamoto; Hiromich Nagasawa; Steven B. McMahon; Michael D. Cole; Laszlo Tora; Nobuhiro Takahashi; Shigeaki Kato

Nuclear receptors (NRs) regulate transcription in a ligand-dependent way through two types of coactivator complexes: the p160/CBP histone acetyl transferase (HAT) complex and the DRIP/TRAP/SMCC complex without HAT activity. Here we identified a large human (h) coactivator complex necessary for the estrogen receptor alpha (ERalpha) transactivation. This complex contains the GCN5 HAT, the c-Myc interacting protein TRRAP/PAF400, TAF(II)30, and other subunits. Similarly to known TFTC (TBP-free TAF(II)-containing)-type HAT complexes (hTFTC, hPCAF, and hSTAGA), TRRP directly interacted with liganded ER alpha, or other NRs. ER alpha transactivation was enhanced by the purified complex in vitro. Antisense TRRAP RNA inhibited estrogen-dependent cell growth of breast cancer cells. Thus, the isolated TFTC-type HAT complex acts as a third class of coactivator complex for NR function.

Collaboration


Dive into the Steven B. McMahon's collaboration.

Top Co-Authors

Avatar

Hestia Mellert

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Xiao-yong Zhang

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Stanek

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victoria Gennaro

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Karen E. Knudsen

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Robyn T. Sussman

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Andrei Thomas-Tikhonenko

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Hallgeir Rui

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge