Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hette Faber is active.

Publication


Featured researches published by Hette Faber.


PLOS ONE | 2008

Rescue of Salivary Gland Function after Stem Cell Transplantation in Irradiated Glands

Isabelle M.A. Lombaert; Jeanette F. Brunsting; Pieter K. Wierenga; Hette Faber; Monique Stokman; Tineke Kok; Willy H. Visser; Harm H. Kampinga; Gerald de Haan; Robert P. Coppes

Head and neck cancer is the fifth most common malignancy and accounts for 3% of all new cancer cases each year. Despite relatively high survival rates, the quality of life of these patients is severely compromised because of radiation-induced impairment of salivary gland function and consequential xerostomia (dry mouth syndrome). In this study, a clinically applicable method for the restoration of radiation-impaired salivary gland function using salivary gland stem cell transplantation was developed. Salivary gland cells were isolated from murine submandibular glands and cultured in vitro as salispheres, which contained cells expressing the stem cell markers Sca-1, c-Kit and Musashi-1. In vitro, the cells differentiated into salivary gland duct cells and mucin and amylase producing acinar cells. Stem cell enrichment was performed by flow cytrometric selection using c-Kit as a marker. In vitro, the cells differentiated into amylase producing acinar cells. In vivo, intra-glandular transplantation of a small number of c-Kit+ cells resulted in long-term restoration of salivary gland morphology and function. Moreover, donor-derived stem cells could be isolated from primary recipients, cultured as secondary spheres and after re-transplantation ameliorate radiation damage. Our approach is the first proof for the potential use of stem cell transplantation to functionally rescue salivary gland deficiency.


International Journal of Radiation Oncology Biology Physics | 2012

Physiological interaction of heart and lung in thoracic irradiation

G. Ghobadi; Sonja J. van der Veen; Beatrijs Bartelds; Rudolf A. de Boer; Michael G. Dickinson; Johan R. de Jong; Hette Faber; Maarten Niemantsverdriet; S. Brandenburg; Rolf M.F. Berger; Johannes A. Langendijk; Robert P. Coppes; Peter van Luijk

INTRODUCTION The risk of early radiation-induced lung toxicity (RILT) limits the dose and efficacy of radiation therapy of thoracic tumors. In addition to lung dose, coirradiation of the heart is a known risk factor in the development RILT. The aim of this study was to identify the underlying physiology of the interaction between lung and heart in thoracic irradiation. METHODS AND MATERIALS Rat hearts, lungs, or both were irradiated to 20 Gy using high-precision proton beams. Cardiopulmonary performance was assessed using breathing rate measurements and F(18)-fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET) scans biweekly and left- and right-sided cardiac hemodynamic measurements and histopathology analysis at 8 weeks postirradiation. RESULTS Two to 12 weeks after heart irradiation, a pronounced defect in the uptake of (18)F-FDG in the left ventricle (LV) was observed. At 8 weeks postirradiation, this coincided with LV perivascular fibrosis, an increase in LV end-diastolic pressure, and pulmonary edema in the shielded lungs. Lung irradiation alone not only increased pulmonary artery pressure and perivascular edema but also induced an increased LV relaxation time. Combined irradiation of lung and heart induced pronounced increases in LV end-diastolic pressure and relaxation time, in addition to an increase in right ventricle end-diastolic pressure, indicative of biventricular diastolic dysfunction. Moreover, enhanced pulmonary edema, inflammation and fibrosis were also observed. CONCLUSIONS Both lung and heart irradiation cause cardiac and pulmonary toxicity via different mechanisms. Thus, when combined, the loss of cardiopulmonary performance is intensified further, explaining the deleterious effects of heart and lung coirradiation. Our findings show for the first time the physiological mechanism underlying the development of a multiorgan complication, RILT. Reduction of dose to either of these organs offers new opportunities to improve radiation therapy treatment of thoracic tumors, potentially facilitating increased treatment doses and tumor control.


Stem cell reports | 2014

Purification and Ex Vivo Expansion of Fully Functional Salivary Gland Stem Cells

Lalitha S.Y. Nanduri; Mirjam Baanstra; Hette Faber; Cecilia Rocchi; Erik Zwart; Gerald de Haan; Ronald van Os; Robert P. Coppes

Summary Hyposalivation often leads to irreversible and untreatable xerostomia. Salivary gland (SG) stem cell therapy is an attractive putative option to salvage these patients but is impeded by the limited availability of adult human tissue. Here, using murine SG cells, we demonstrate single-cell self-renewal, differentiation, enrichment of SG stem cells, and robust in vitro expansion. Dependent on stem cell marker expression, SG sphere-derived single cells could be differentiated in vitro into distinct lobular or ductal/lobular organoids, suggestive of progenitor or stem cell potency. Expanded cells were able to form miniglands/organoids containing multiple SG cell lineages. Expansion of these multipotent cells through serial passaging resulted in selection of a cell population, homogenous for stem cell marker expression (CD24hi/CD29hi). Cells highly expressing CD24 and CD29 could be prospectively isolated and were able to efficiently restore radiation-damaged SG function. Our approach will facilitate the use of adult SG stem cells for a variety of scientific and therapeutic purposes.


Science Translational Medicine | 2015

Sparing the region of the salivary gland containing stem cells preserves saliva production after radiotherapy for head and neck cancer

Peter van Luijk; Sarah Pringle; Joseph O. Deasy; Vitali Moiseenko; Hette Faber; Allan Hovan; Mirjam Baanstra; Hans Paul van der Laan; R.G.J. Kierkels; Arjen van der Schaaf; Max J. H. Witjes; Jacobus M. Schippers; S. Brandenburg; Johannes A. Langendijk; Jonn Wu; Robert P. Coppes

Avoiding irradiation of the region of the parotid gland containing stem cells reduces the risk of xerostomia (dry mouth). Preserving saliva flow after radiotherapy Radiotherapy for head and neck cancer may damage the salivary glands, resulting in reduced salivation with consequent xerostomia (dry mouth). Xerostomia affects the quality of life of patients with head and neck cancer. van Luijk and co-workers reported the location of salivary (parotid) gland stem cells in the mouse, rat, and human. Next, they showed in rat and human that irradiation of the salivary gland region containing the highest number of stem cells resulted in the greatest loss of saliva production after treatment. Finally, the authors showed that it is possible to avoid irradiation of this specific area during therapy, which may reduce the patient’s risk of developing post-radiotherapy xerostomia. Each year, 500,000 patients are treated with radiotherapy for head and neck cancer, resulting in relatively high survival rates. However, in 40% of patients, quality of life is severely compromised because of radiation-induced impairment of salivary gland function and consequent xerostomia (dry mouth). New radiation treatment technologies enable sparing of parts of the salivary glands. We have determined the parts of the major salivary gland, the parotid gland, that need to be spared to ensure that the gland continues to produce saliva after irradiation treatment. In mice, rats, and humans, we showed that stem and progenitor cells reside in the region of the parotid gland containing the major ducts. We demonstrated in rats that inclusion of the ducts in the radiation field led to loss of regenerative capacity, resulting in long-term gland dysfunction with reduced saliva production. Then we showed in a cohort of patients with head and neck cancer that the radiation dose to the region of the salivary gland containing the stem/progenitor cells predicted the function of the salivary glands one year after radiotherapy. Finally, we showed that this region of the salivary gland could be spared during radiotherapy, thus reducing the risk of post-radiotherapy xerostomia.


Cancer Research | 2005

Radiation damage to the heart enhances early radiation-induced lung function loss

Peter van Luijk; Alena Novakova-Jiresova; Hette Faber; Jacobus M. Schippers; Harm H. Kampinga; Harm Meertens; Robert P. Coppes

In many thoracic cancers, the radiation dose that can safely be delivered to the target volume is limited by the tolerance dose of the surrounding lung tissue. It has been hypothesized that irradiation of the heart may be an additional risk factor for the development of early radiation-induced lung morbidity. In the current study, the dependence of lung tolerance dose on heart irradiation is determined. Fifty percent of the rat lungs were irradiated either including or excluding the heart. Proton beams were used to allow very accurate and conformal dose delivery. Lung function toxicity was scored using a breathing rate assay. We confirmed that the tolerance dose for early lung function damage depends not only on the lung region that is irradiated but also that concomitant irradiation of the heart severely reduces the tolerance of the lung. This study for the first time shows that the response of an organ to irradiation does not necessarily depend on the dose distribution in that organ alone.


Radiotherapy and Oncology | 2013

Salisphere derived c-Kit+ cell transplantation restores tissue homeostasis in irradiated salivary gland

Lalitha S.Y. Nanduri; Isabelle M.A. Lombaert; Marianne van der Zwaag; Hette Faber; Jeanette F. Brunsting; Ronald van Os; Robert P. Coppes

INTRODUCTION During radiotherapy salivary glands of head and neck cancer patients are unavoidably co-irradiated, potentially resulting in life-long impairment. Recently we showed that transplantation of salisphere-derived c-Kit expressing cells can functionally regenerate irradiated salivary glands. This study aims to select a more potent subpopulation of c-Kit(+) cells, co-expressing stem cell markers and to investigate whether long-term tissue homeostasis is restored after stem cell transplantation. METHODS AND RESULTS Salisphere derived c-Kit(+) cells that co-expressed CD24 and/or CD49f markers, were intra-glandularly injected into 15 Gy irradiated submandibular glands of mice. Particularly, c-Kit(+)/CD24(+)/CD49f(+) cell transplanted mice improved saliva production (54.59 ± 11.1%) versus the irradiated control group (21.5 ± 8.7%). Increase in expression of cells with differentiated duct cell markers like, cytokeratins (CK8, 18, 7 and 14) indicated functional recovery of this compartment. Moreover, ductal stem cell marker expression like c-Kit, CD133, CD24 and CD49f reappeared after transplantation indicating long-term functional maintenance potential of the gland. Furthermore, a normalization of vascularization as indicated by CD31 expression and reduction of fibrosis was observed, indicative of normalization of the microenvironment. CONCLUSIONS Our results show that stem cell transplantation not only rescues hypo-salivation, but also restores tissue homeostasis of the irradiated gland, necessary for long-term maintenance of adult tissue.


International Journal of Radiation Oncology Biology Physics | 2009

Bath and Shower Effects in the Rat Parotid Gland Explain Increased Relative Risk of Parotid Gland Dysfunction After Intensity-Modulated Radiotherapy

Peter van Luijk; Hette Faber; Jacobus M. Schippers; S. Brandenburg; Johannes A. Langendijk; Harm Meertens; Robert P. Coppes

PURPOSE To assess in a rat model whether adding a subtolerance dose in a region adjacent to a high-dose irradiated subvolume of the parotid gland influences its response (bath-and-shower effect). METHODS AND MATERIALS Irradiation of the whole, cranial 50%, and/or the caudal 50% of the parotid glands of Wistar rats was performed using 150-MeV protons. To determine suitable (i.e., subtolerance) dose levels for a bath-dose, both whole parotid glands were irradiated with 5 to 25 Gy. Subsequently groups of Wistar rats received 30 Gy to the caudal 50% (shower) and 0 to 10 Gy to the cranial 50% (bath) of both parotid glands. Stimulated saliva flow rate (function) was measured before and up to 240 days after irradiation. RESULTS Irradiation of both glands up to a dose of 10 Gy did not result in late loss of function and is thus regarded subtolerance. Addition of a dose bath of 1 to 10 Gy to a high-dose in the caudal 50% of the glands resulted in enhanced function loss. CONCLUSION Similar to the spinal cord, the parotid gland demonstrates a bath and shower effect, which may explain the less-than-expected sparing of function after IMRT.


Radiotherapy and Oncology | 2013

Prediction of response to radiotherapy in the treatment of esophageal cancer using stem cell markers

Justin K. Smit; Hette Faber; Maarten Niemantsverdriet; Mirjam Baanstra; Johan Bussink; Harry Hollema; Ronald van Os; John Plukker; Robert P. Coppes

BACKGROUND AND PURPOSE In this study, we investigated whether cancer stem cell marker expressing cells can be identified that predict for the response of esophageal cancer (EC) to CRT. MATERIALS AND METHODS EC cell-lines OE-33 and OE-21 were used to assess in vitro, stem cell activity, proliferative capacity and radiation response. Xenograft tumors were generated using NOD/SCID mice to assess in vivo proliferative capacity and tumor hypoxia. Archival and fresh EC biopsy tissue was used to confirm our in vitro and in vivo results. RESULTS We showed that the CD44+/CD24- subpopulation of EC cells exerts a higher proliferation rate and sphere forming potential and is more radioresistant in vitro, when compared to unselected or CD44+/CD24+ cells. Moreover, CD44+/CD24- cells formed xenograft tumors faster and were often located in hypoxic tumor areas. In a study of archival pre-neoadjuvant CRT biopsy material from EC adenocarcinoma patients (N=27), this population could only be identified in 50% (9/18) of reduced-responders to neoadjuvant CRT, but never (0/9) in the complete responders (P=0.009). CONCLUSION These results warrant further investigation into the possible clinical benefit of CD44+/CD24- as a predictive marker in EC patients for the response to chemoradiation.


Radiotherapy and Oncology | 2009

Enhanced proliferation of acinar and progenitor cells by prophylactic pilocarpine treatment underlies the observed amelioration of radiation injury to parotid glands

Fred R. Burlage; Hette Faber; Harm H. Kampinga; Johannes A. Langendijk; Arjan Vissink; Robert P. Coppes

BACKGROUND Administration of pilocarpine before irradiation can ameliorate radiation-induced hyposalivation. Indirect evidence suggests that this effect may be mediated through induction of a compensatory response. In this study, this hypothesis is tested directly, by assessing the proliferation of progenitor and secretory cells in irradiated and non-irradiated parotid gland tissue. METHODS In a rat model, parotid glands were unilaterally irradiated with a single dose of 15 Gy, 60 min after administration of pilocarpine (4.0mg/kg). Rats were sacrificed for proliferating cell nuclear antigen (PCNA) labelling, assessing the number of proliferating progenitor and secretory cells, before, and 10h, 1, 3, 7, 10, 20 and 30 days after irradiation. RESULTS A small radiation-induced increase in PCNA expressing cells was observed, both in the acinar (secretory cells) and intercalated duct cell (containing the progenitor cells) compartment. This increment was significantly enhanced in pilocarpine pre-treated glands. In fact, in this group of animals increased proliferation was observed both in the irradiated and the shielded gland. CONCLUSIONS Amelioration of early loss of rat salivary gland function after radiation by pilocarpine pre-treatment is, at least in part, due to compensatory mechanisms through increased proliferation of undamaged cells.


International Journal of Radiation Oncology Biology Physics | 2010

QUANTIFYING LOCAL RADIATION-INDUCED LUNG DAMAGE FROM COMPUTED TOMOGRAPHY

G. Ghobadi; Laurens E. Hogeweg; Hette Faber; Wim Tukker; Jacobus M. Schippers; S. Brandenburg; Johannes A. Langendijk; Robert P. Coppes; Peter van Luijk

PURPOSE Optimal implementation of new radiotherapy techniques requires accurate predictive models for normal tissue complications. Since clinically used dose distributions are nonuniform, local tissue damage needs to be measured and related to local tissue dose. In lung, radiation-induced damage results in density changes that have been measured by computed tomography (CT) imaging noninvasively, but not yet on a localized scale. Therefore, the aim of the present study was to develop a method for quantification of local radiation-induced lung tissue damage using CT. METHODS AND MATERIALS CT images of the thorax were made 8 and 26 weeks after irradiation of 100%, 75%, 50%, and 25% lung volume of rats. Local lung tissue structure (S(L)) was quantified from local mean and local standard deviation of the CT density in Hounsfield units in 1-mm(3) subvolumes. The relation of changes in S(L) (DeltaS(L)) to histologic changes and breathing rate was investigated. Feasibility for clinical application was tested by applying the method to CT images of a patient with non-small-cell lung carcinoma and investigating the local dose-effect relationship of DeltaS(L). RESULTS In rats, a clear dose-response relationship of DeltaS(L) was observed at different time points after radiation. Furthermore, DeltaS(L) correlated strongly to histologic endpoints (infiltrates and inflammatory cells) and breathing rate. In the patient, progressive local dose-dependent increases in DeltaS(L) were observed. CONCLUSION We developed a method to quantify local radiation-induced tissue damage in the lung using CT. This method can be used in the development of more accurate predictive models for normal tissue complications.

Collaboration


Dive into the Hette Faber's collaboration.

Top Co-Authors

Avatar

Robert P. Coppes

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Johannes A. Langendijk

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter van Luijk

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Harm H. Kampinga

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

G. Ghobadi

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Jacobus M. Schippers

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Harm Meertens

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Arjan Vissink

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge