Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideharu Miura is active.

Publication


Featured researches published by Hideharu Miura.


Journal of Applied Clinical Medical Physics | 2014

Clinical introduction of Monte Carlo treatment planning for lung stereotactic body radiotherapy

Hideharu Miura; Norihisa Masai; Ryoong‑Jin Oh; Hiroya Shiomi; Kouichi Yamada; Junichi Sasaki; Toshihiko Inoue

The purpose of this study was to investigate the impact of Monte Carlo (MC) calculations and optimized dose definitions in stereotactic body radiotherapy (SBRT) for lung cancer patients. We used a retrospective patient review and basic virtual phantom to determine dose prescriptions. Fifty‐three patients underwent SBRT. A basic virtual phantom had a gross tumor volume (GTV) of 10.0 mm with equivalent water density of 1.0 g/cm3, which was surrounded by equivalent lung surrounding the GTV of 0.25 g/cm3. D95 of the planning target volume (PTV) and D99 of the GTV were evaluated with different GTV sizes (5.0 to 30.0 mm) and different lung densities (0.05 to 0.45 g/cm3). Prescribed dose was defined as 95% of the PTV should receive 100% of the dose (48 Gy/4 fractions) using pencil beam (PB) calculation and recalculated using MC calculation. In the patient study, average doses to the D95 of the PTV and D99 of the GTV using the MC calculation plan were 19.9% and 10.2% lower than those by the PB calculation plan, respectively. In the phantom study, decreased doses to the D95 of the PTV and D99 of the GTV using the MC calculation plan were accompanied with changes GTV size from 30.0 to 5.0 mm, which was decreased from 8.4% to 19.6% for the PTV and from 17.4% to 27.5% for the GTV Similar results were seen with changes in lung density from 0. 45 to 0.05 g/cm3, with doses to the D95 of the PTV and D99 of the GTV were decreased from 12.8% to 59.0% and from 7.6% to 44.8%, respectively. The decrease in dose to the PTV with MC calculation was strongly dependent on lung density. We suggest that dose definition to the GTV for lung cancer SBRT be optimized using MC calculation. Our current clinical protocol for lung SBRT is based on a prescribed dose of 44 Gy in 4 fractions to the GTV using MC calculation. PACS number: 87.55.D‐, 87.55.K‐


Journal of Radiation Research | 2013

Approach to dose definition to the gross tumor volume for lung cancer with respiratory tumor motion

Hideharu Miura; Norihisa Masai; Ryoong-Jin Oh; Hiroya Shiomi; Junichi Sasaki; Toshihiko Inoue

The purpose of this study was to validate the dose prescription defined to the gross tumor volume (GTV) 3D and 4D dose distributions of stereotactic radiotherapy for lung cancer. Treatment plans for 94 patients were generated based on computed tomography (CT) under free breathing. A uniform margin of 8 mm was added to the internal target volume (ITV) to generate the planning target volume (PTV). A leaf margin of 2 mm was added to the PTV. The prescription dose was defined such that 99% of the GTV should receive 100% of the dose using the Monte Carlo calculation (iPlan RT DoseTM) for 6-MV photon beams. The 3D dose distribution was determined using CT under free breathing. The 4D dose distribution plan was recalculated to investigate the effect of tumor motion using the same monitor units as those used for the 3D dose distribution plan. D99 (99% of the GTV) in the 4D plan was defined as the average D99 in each of the four breathing phases (0%, 25%, 50% and 75%). The dose difference between maximum and minimum at D99 of the GTV in 4D calculations was 0.6 ± 1.0% (range 0.2–4.6%). The average D99 of the GTV from 4D calculations in most patients was almost 100% (99.8 ± 1.0%). No significant difference was found in dose to the GTV between 3D and 4D dose calculations (P = 0.67). This study supports the clinical acceptability of treatment planning based on the dose prescription defined to the GTV.


Journal of Radiation Research | 2012

Dosimetric and delivery characterizations of full-arc and half-arc volumetric-modulated arc therapy for maxillary cancer.

Hideharu Miura; Masayuki Fujiwara; Masao Tanooka; Hiroshi Doi; H. Inoue; Yasuhiro Takada; Norihiko Kamikonya; Shozo Hirota

We compared the efficiency and accuracy of full-arc and half-arc volumetric-modulated arc therapy (VMAT) delivery for maxillary cancer. Plans for gantry rotation angles of 360° and 180° (full-arc and half-arc VMAT) were created for six maxillary cancer cases with the Monaco treatment planning system, and delivered using an Elekta Synergy linear accelerator. Full-arc and half-arc VMAT were compared with regard to homogeneity index (HI), conformity index (CI), mean dose to normal brain, total monitor units (MU), delivery times, root mean square (r.m.s.) gantry accelerations (°/s2), and r.m.s. gantry angle errors (°). The half-arc VMAT plans achieved comparable HI and CI to the full-arc plans. Mean doses to the normal brain and brainstem with the half-arc VMAT plans were on average 16% and 17% lower than those with the full-arc VMAT plans. For other organs at risk (OARs), no significant DVH differences were observed between plans. Half-arc VMAT resulted in 11% less total MU and 20% shorter delivery time than the full-arc VMAT, while r.m.s. gantry acceleration and r.m.s. gantry angle error during half-arc VMAT delivery were 30% and 23% less than those during full-arc VMAT delivery, respectively. Furthermore, the half-arc VMAT plans were comparable with the full-arc plans regarding dose homogeneity and conformity in maxillary cancer, and provided a statistical decrease in mean dose to OAR, total MU, delivery time and gantry angle error. Half-arc VMAT plans may be a suitable treatment option in radiotherapy for maxillary cancer.


Journal of Radiation Research | 2015

Differences in rates of radiation-induced true and false rib fractures after stereotactic body radiation therapy for Stage I primary lung cancer

Hideharu Miura; Toshihiko Inoue; Hiroya Shiomi; Ryoong-Jin Oh

Abstract The purpose of this study was to analyze the dosimetry and investigate the clinical outcomes of radiation-induced rib fractures (RIRFs) after stereotactic body radiotherapy (SBRT). A total of 126 patients with Stage I primary lung cancer treated with SBRT, who had undergone follow-up computed tomography (CT) at least 12 months after SBRT and who had no previous overlapping radiation exposure were included in the study. We used the Mantel–Haenszel method and multiple logistic regression analysis to compare risk factors. We analyzed D(0.5 cm3) (minimum absolute dose received by a 0.5-cm3 volume) and identified each rib that received a biologically effective dose (BED) (BED3, using the linear–quadratic (LQ) formulation assuming an α/β = 3) of at least 50 Gy. Of the 126 patients, 46 (37%) suffered a total of 77 RIRFs. The median interval from SBRT to RIRF detection was 15 months (range, 3–56 months). The 3-year cumulative probabilities were 45% (95% CI, 34–56%) and 3% (95% CI, 0–6%), for Grades 1 and 2 RIRFs, respectively. Multivariate analysis showed that tumor location was a statistically significant risk factor for the development of Grade 1 RIRFs. Of the 77 RIRFs, 71 (92%) developed in the true ribs (ribs 1–7), and the remaining six developed in the false ribs (ribs 8–12). The BED3 associated with 10% and 50% probabilities of RIRF were 55 and 210 Gy to the true ribs and 240 and 260 Gy to the false ribs. We conclude that RIRFs develop more frequently in true ribs than in false ribs.


Journal of Applied Clinical Medical Physics | 2016

Gafchromic EBT-XD film: Dosimetry characterization in high-dose, volumetric-modulated arc therapy.

Hideharu Miura; Shuichi Ozawa; Fumika Hosono; Naoki Sumida; Toshiya Okazue; Kiyoshi Yamada; Yasushi Nagata

Radiochromic films are important tools for assessing complex dose distributions. Gafchromic EBT‐XD films have been designed for optimal performance in the 40–4,000 cGy dose range. We investigated the dosimetric characteristics of these films, including their dose‐response, postexposure density growth, and dependence on scanner orientation, beam energy, and dose rate with applications to high‐dose volumetric‐modulated arc therapy (VMAT) verification. A 10 MV beam from a TrueBeam STx linear accelerator was used to irradiate the films with doses in the 0–4,000 cGy range. Postexposure coloration was analyzed at postirradiation times ranging from several minutes to 48 h. The films were also irradiated with 6 MV (dose rate (DR): 600 MU/min), 6 MV flattening filter‐free (FFF) (DR: 1,400 MU/ min), and 10 MV FFF (DR: 2,400 MU/min) beams to determine the energy and dose‐rate dependence. For clinical examinations, we compared the dose distribution measured with EBT‐XD films and calculated by the planning system for four VMAT cases. The red channel of the EBT‐XD film exhibited a wider dynamic range than the green and blue channels. Scanner orientation yielded a variation of ∼3% in the net optical density (OD). The difference between the film front and back scan orientations was negligible, with variation of ∼1.3% in the net OD. The net OD increased sharply within the first 6 hrs after irradiation and gradually afterwards. No significant difference was observed for the beam energy and dose rate, with a variation of ∼1.5% in the net OD. The gamma passing rates (at 3%, 3 mm) between the film‐ measured and treatment planning system (TPS)‐calculated dose distributions under a high dose VMAT plan in the absolute dose mode were more than 98.9%. PACS number(s): 87.56 FcRadiochromic films are important tools for assessing complex dose distributions. Gafchromic EBT-XD films have been designed for optimal performance in the 40-4,000 cGy dose range. We investigated the dosimetric characteristics of these films, including their dose-response, postexposure density growth, and dependence on scanner orientation, beam energy, and dose rate with applications to high-dose volumetric-modulated arc therapy (VMAT) verification. A 10 MV beam from a TrueBeam STx linear accelerator was used to irradiate the films with doses in the 0-4,000 cGy range. Postexposure coloration was analyzed at postirradiation times ranging from several minutes to 48 h. The films were also irradiated with 6 MV (dose rate (DR): 600 MU/min), 6 MV flattening filter-free (FFF) (DR: 1,400 MU/ min), and 10 MV FFF (DR: 2,400 MU/min) beams to determine the energy and dose-rate dependence. For clinical examinations, we compared the dose distribution measured with EBT-XD films and calculated by the planning system for four VMAT cases. The red channel of the EBT-XD film exhibited a wider dynamic range than the green and blue channels. Scanner orientation yielded a variation of ∼3% in the net optical density (OD). The difference between the film front and back scan orientations was negligible, with variation of ∼1.3% in the net OD. The net OD increased sharply within the first 6 hrs after irradiation and gradually afterwards. No significant difference was observed for the beam energy and dose rate, with a variation of ∼1.5% in the net OD. The gamma passing rates (at 3%, 3 mm) between the film- measured and treatment planning system (TPS)-calculated dose distributions under a high dose VMAT plan in the absolute dose mode were more than 98.9%. PACS number(s): 87.56 Fc.


Journal of Applied Clinical Medical Physics | 2017

Efficacy of robust optimization plan with partial-arc VMAT for photon volumetric-modulated arc therapy: A phantom study

Hideharu Miura; Shuichi Ozawa; Yasushi Nagata

Abstract This study investigated position dependence in planning target volume (PTV)‐based and robust optimization plans using full‐arc and partial‐arc volumetric modulated arc therapy (VMAT). The gantry angles at the periphery, intermediate, and center CTV positions were 181°–180° (full‐arc VMAT) and 181°–360° (partial‐arc VMAT). A PTV‐based optimization plan was defined by 5 mm margin expansion of the CTV to a PTV volume, on which the dose constraints were applied. The robust optimization plan consisted of a directly optimized dose to the CTV under a maximum‐uncertainties setup of 5 mm. The prescription dose was normalized to the CTV D99% (the minimum relative dose that covers 99% of the volume of the CTV) as an original plan. The isocenter was rigidly shifted at 1 mm intervals in the anterior‐posterior (A‐P), superior‐inferior (S‐I), and right‐left (R‐L) directions from the original position to the maximum‐uncertainties setup of 5 mm in the original plan, yielding recalculated dose distributions. It was found that for the intermediate and center positions, the uncertainties in the D99% doses to the CTV for all directions did not significantly differ when comparing the PTV‐based and robust optimization plans (P > 0.05). For the periphery position, uncertainties in the D99% doses to the CTV in the R‐L direction for the robust optimization plan were found to be lower than those in the PTV‐based optimization plan (P < 0.05). Our study demonstrated that a robust optimization plans efficacy using partial‐arc VMAT depends on the periphery CTV position.


Physica Medica | 2016

Method of evaluating respiratory induced organ motion by vector volume histogram

Hideharu Miura; Shuichi Ozawa; H. Kawabata; Y. Doi; Masahiro Kenjou; Kengo Furukawa; Minoru Nakao; Yasushi Nagata

PURPOSE Published organ motion data have been collected from measurements of a limited number of points within the organ, the centroid, or the edge of the organ. These are derived from the spatial characteristics of respiratory induced motion; however, this approach does not consider non-rigid organ deformation. We propose a novel quantitative method for evaluating respiratory induced organ motion using Deformable Image Registration (DIR). METHOD Two phases from a 4-dimensional computed tomography (4D CT) dataset at maximum inspiration and expiration were each taken from five patients. The left and right lungs, esophagus, stomach, spinal cord, and liver were manually contoured in the end-expiration phase. The hybrid deformable registration algorithm of the RayStation treatment planning system (TPS) was used to deform the end-expiration phase to the end-inspiration phase. From this, the deformation vector field (DVF) was calculated. DVFs consist of DVFLR (left-right), DVFAP (anterior-posterior), and DVFSI (superior-inferior) as separate files. We calculated the vector volume histogram (VVH) and Lmax (maximum absolute vector of the organ) to evaluate every vector for each individual organ. We also measured respiratory organ motion from the position of the organ centroid in two phases. RESULTS VVH enabled us to find the absolute distance and volume of the organ contributing to motion points on the curve. Organ motion using the centroid method was smaller than Lmax using VVH. Using the centroid method, it is difficult to evaluate the deformable organ motion. CONCLUSION VVH may be a useful technique in evaluating organ volumetric change during respiratory organ motion.


Journal of Applied Clinical Medical Physics | 2016

Simple quality assurance method of dynamic tumor tracking with the gimbaled linac system using a light field

Hideharu Miura; Shuichi Ozawa; Masahiro Hayata; Shintaro Tsuda; Kiyoshi Yamada; Yasushi Nagata

We proposed a simple visual method for evaluating the dynamic tumor tracking (DTT) accuracy of a gimbal mechanism using a light field. A single photon beam was set with a field size of 30×30 mm2 at a gantry angle of 90°. The center of a cube phantom was set up at the isocenter of a motion table, and 4D modeling was performed based on the tumor and infrared (IR) marker motion. After 4D modeling, the cube phantom was replaced with a sheet of paper, which was placed perpendicularly, and a light field was projected on the sheet of paper. The light field was recorded using a web camera in a treatment room that was as dark as possible. Calculated images from each image obtained using the camera were summed to compose a total summation image. Sinusoidal motion sequences were produced by moving the phantom with a fixed amplitude of 20 mm and different breathing periods of 2, 4, 6, and 8 s. The light field was projected on the sheet of paper under three conditions: with the moving phantom and DTT based on the motion of the phantom, with the moving phantom and non‐DTT, and with a stationary phantom for comparison. The values of tracking errors using the light field were 1.12±0.72, 0.31±0.19, 0.27±0.12, and 0.15±0.09 mm for breathing periods of 2, 4, 6, and 8 s, respectively. The tracking accuracy showed dependence on the breathing period. We proposed a simple quality assurance (QA) process for the tracking accuracy of a gimbal mechanism system using a light field and web camera. Our method can assess the tracking accuracy using a light field without irradiation and clearly visualize distributions like film dosimetry. PACS number(s): 87.56 Fc, 87.55.Qr


Journal of Radiation Research | 2013

Three-dimensional radiochromic film dosimetry for volumetric modulated arc therapy using a spiral water phantom

Masao Tanooka; Hiroshi Doi; Hideharu Miura; H. Inoue; Yasue Niwa; Yasuhiro Takada; Masayuki Fujiwara; Toshiyuki Sakai; Kiyoshi Sakamoto; Norihiko Kamikonya; Shozo Hirota

We validated 3D radiochromic film dosimetry for volumetric modulated arc therapy (VMAT) using a newly developed spiral water phantom. The phantom consists of a main body and an insert box, each of which has an acrylic wall thickness of 3 mm and is filled with water. The insert box includes a spiral film box used for dose-distribution measurement, and a film holder for positioning a radiochromic film. The film holder has two parallel walls whose facing inner surfaces are equipped with spiral grooves in a mirrored configuration. The film is inserted into the spiral grooves by its side edges and runs along them to be positioned on a spiral plane. Dose calculation was performed by applying clinical VMAT plans to the spiral water phantom using a commercial Monte Carlo-based treatment-planning system, Monaco, whereas dose was measured by delivering the VMAT beams to the phantom. The calculated dose distributions were resampled on the spiral plane, and the dose distributions recorded on the film were scanned. Comparisons between the calculated and measured dose distributions yielded an average gamma-index pass rate of 87.0% (range, 91.2–84.6%) in nine prostate VMAT plans under 3 mm/3% criteria with a dose-calculation grid size of 2 mm. The pass rates were increased beyond 90% (average, 91.1%; range, 90.1–92.0%) when the dose-calculation grid size was decreased to 1 mm. We have confirmed that 3D radiochromic film dosimetry using the spiral water phantom is a simple and cost-effective approach to VMAT dose verification.


Physica Medica | 2017

Impact of deformable image registration accuracy on thoracic images with different regularization weight parameter settings

Hideharu Miura; Shuichi Ozawa; Minoru Nakao; Kengo Furukawa; Y. Doi; H. Kawabata; Masahiro Kenjou; Yasushi Nagata

PURPOSE We assessed the deformable image registration (DIR) accuracy of thoracic images under different regularization weights using commercially available DIR software. METHODS The thoracic 4-dimensional (4D) CT images of 10 patients were used. The datasets for these patients were provided by DIR-lab (www.dir-lab.com) and included a coordinate list of 300 anatomic landmarks that had been manually identified. The ANAtomically CONstrained Deformation Algorithm (ANACONDA) of RayStation (RaySearch Laboratories, Stockholm, Sweden) was used to deform the peak-inhale to peak-exhale images under different regularization weights (4, 40, 400-default setting, 1500, 4000, 10,000, 15,000, 20,000, 30,000, and 40,000). The regularization weights were changed using a script. The registration error (RE) was determined by calculating the difference at each landmark point between the displacement calculated by the DIR software and that calculated by the landmark. We measured the computation time for each regularization weight setting. RESULTS High regularization weights resulted in a smaller RE than that observed with lower regularization weights. The RE decreases rapidly with increase in regularization weight before reaching a plateau. No significant difference was found between a regularization weight of 400 and regularization weights of 4, 40, 4000 or 40,000 (P value >0.05). The range of the average time was 8.4-12.2s. CONCLUSIONS We concluded that the default setting for ANACONDA is stable with respect to regularization weight in the thoracic region.

Collaboration


Dive into the Hideharu Miura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Doi

Hyogo College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Masao Tanooka

Hyogo College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shozo Hirota

Hyogo College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yasuhiro Takada

Hyogo College of Medicine

View shared research outputs
Top Co-Authors

Avatar

H. Inoue

Hyogo College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge