Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kiyoshi Yamada is active.

Publication


Featured researches published by Kiyoshi Yamada.


Journal of Applied Clinical Medical Physics | 2016

Gafchromic EBT-XD film: Dosimetry characterization in high-dose, volumetric-modulated arc therapy.

Hideharu Miura; Shuichi Ozawa; Fumika Hosono; Naoki Sumida; Toshiya Okazue; Kiyoshi Yamada; Yasushi Nagata

Radiochromic films are important tools for assessing complex dose distributions. Gafchromic EBT‐XD films have been designed for optimal performance in the 40–4,000 cGy dose range. We investigated the dosimetric characteristics of these films, including their dose‐response, postexposure density growth, and dependence on scanner orientation, beam energy, and dose rate with applications to high‐dose volumetric‐modulated arc therapy (VMAT) verification. A 10 MV beam from a TrueBeam STx linear accelerator was used to irradiate the films with doses in the 0–4,000 cGy range. Postexposure coloration was analyzed at postirradiation times ranging from several minutes to 48 h. The films were also irradiated with 6 MV (dose rate (DR): 600 MU/min), 6 MV flattening filter‐free (FFF) (DR: 1,400 MU/ min), and 10 MV FFF (DR: 2,400 MU/min) beams to determine the energy and dose‐rate dependence. For clinical examinations, we compared the dose distribution measured with EBT‐XD films and calculated by the planning system for four VMAT cases. The red channel of the EBT‐XD film exhibited a wider dynamic range than the green and blue channels. Scanner orientation yielded a variation of ∼3% in the net optical density (OD). The difference between the film front and back scan orientations was negligible, with variation of ∼1.3% in the net OD. The net OD increased sharply within the first 6 hrs after irradiation and gradually afterwards. No significant difference was observed for the beam energy and dose rate, with a variation of ∼1.5% in the net OD. The gamma passing rates (at 3%, 3 mm) between the film‐ measured and treatment planning system (TPS)‐calculated dose distributions under a high dose VMAT plan in the absolute dose mode were more than 98.9%. PACS number(s): 87.56 FcRadiochromic films are important tools for assessing complex dose distributions. Gafchromic EBT-XD films have been designed for optimal performance in the 40-4,000 cGy dose range. We investigated the dosimetric characteristics of these films, including their dose-response, postexposure density growth, and dependence on scanner orientation, beam energy, and dose rate with applications to high-dose volumetric-modulated arc therapy (VMAT) verification. A 10 MV beam from a TrueBeam STx linear accelerator was used to irradiate the films with doses in the 0-4,000 cGy range. Postexposure coloration was analyzed at postirradiation times ranging from several minutes to 48 h. The films were also irradiated with 6 MV (dose rate (DR): 600 MU/min), 6 MV flattening filter-free (FFF) (DR: 1,400 MU/ min), and 10 MV FFF (DR: 2,400 MU/min) beams to determine the energy and dose-rate dependence. For clinical examinations, we compared the dose distribution measured with EBT-XD films and calculated by the planning system for four VMAT cases. The red channel of the EBT-XD film exhibited a wider dynamic range than the green and blue channels. Scanner orientation yielded a variation of ∼3% in the net optical density (OD). The difference between the film front and back scan orientations was negligible, with variation of ∼1.3% in the net OD. The net OD increased sharply within the first 6 hrs after irradiation and gradually afterwards. No significant difference was observed for the beam energy and dose rate, with a variation of ∼1.5% in the net OD. The gamma passing rates (at 3%, 3 mm) between the film- measured and treatment planning system (TPS)-calculated dose distributions under a high dose VMAT plan in the absolute dose mode were more than 98.9%. PACS number(s): 87.56 Fc.


Journal of Applied Clinical Medical Physics | 2016

Simple quality assurance method of dynamic tumor tracking with the gimbaled linac system using a light field

Hideharu Miura; Shuichi Ozawa; Masahiro Hayata; Shintaro Tsuda; Kiyoshi Yamada; Yasushi Nagata

We proposed a simple visual method for evaluating the dynamic tumor tracking (DTT) accuracy of a gimbal mechanism using a light field. A single photon beam was set with a field size of 30×30 mm2 at a gantry angle of 90°. The center of a cube phantom was set up at the isocenter of a motion table, and 4D modeling was performed based on the tumor and infrared (IR) marker motion. After 4D modeling, the cube phantom was replaced with a sheet of paper, which was placed perpendicularly, and a light field was projected on the sheet of paper. The light field was recorded using a web camera in a treatment room that was as dark as possible. Calculated images from each image obtained using the camera were summed to compose a total summation image. Sinusoidal motion sequences were produced by moving the phantom with a fixed amplitude of 20 mm and different breathing periods of 2, 4, 6, and 8 s. The light field was projected on the sheet of paper under three conditions: with the moving phantom and DTT based on the motion of the phantom, with the moving phantom and non‐DTT, and with a stationary phantom for comparison. The values of tracking errors using the light field were 1.12±0.72, 0.31±0.19, 0.27±0.12, and 0.15±0.09 mm for breathing periods of 2, 4, 6, and 8 s, respectively. The tracking accuracy showed dependence on the breathing period. We proposed a simple quality assurance (QA) process for the tracking accuracy of a gimbal mechanism system using a light field and web camera. Our method can assess the tracking accuracy using a light field without irradiation and clearly visualize distributions like film dosimetry. PACS number(s): 87.56 Fc, 87.55.Qr


Journal of Applied Clinical Medical Physics | 2018

Tolerance levels of CT number to electron density table for photon beam in radiotherapy treatment planning system

Minoru Nakao; Shuichi Ozawa; Kiyoshi Yamada; Katsunori Yogo; Fumika Hosono; Masahiro Hayata; Akito Saito; Kentaro Miki; Takeo Nakashima; Yusuke Ochi; Daisuke Kawahara; Yoshiharu Morimoto; Toru Yoshizaki; Hiroshige Nozaki; Kosaku Habara; Yasushi Nagata

Abstract The accuracy of computed tomography number to electron density (CT‐ED) calibration is a key component for dose calculations in an inhomogeneous medium. In a previous work, it was shown that the tolerance levels of CT‐ED calibration became stricter with an increase in tissue thickness and decrease in the effective energy of a photon beam. For the last decade, a low effective energy photon beam (e.g., flattening‐filter‐free (FFF)) has been used in clinical sites. However, its tolerance level has not been established yet. We established a relative electron density (ED) tolerance level for each tissue type with an FFF beam. The tolerance levels were calculated using the tissue maximum ratio (TMR) and each corresponding maximum tissue thickness. To determine the relative ED tolerance level, TMR data from a Varian accelerator and the adult reference computational phantom data in the International Commission on Radiological Protection publication 110 (ICRP‐110 phantom) were used in this study. The 52 tissue components of the ICRP‐110 phantom were classified by mass density as five tissues groups including lung, adipose/muscle, cartilage/spongy‐bone, cortical bone, and tooth tissue. In addition, the relative ED tolerance level of each tissue group was calculated when the relative dose error to local dose reached 2%. The relative ED tolerances of a 6 MVFFF beam for lung, adipose/muscle, and cartilage/spongy‐bone were ±0.044, ±0.022, and ±0.044, respectively. The thicknesses of the cortical bone and tooth groups were too small to define the tolerance levels. Because the tolerance levels of CT‐ED calibration are stricter with a decrease in the effective energy of the photon beam, the tolerance levels are determined by the lowest effective energy in useable beams for radiotherapy treatment planning systems.


Journal of Applied Clinical Medical Physics | 2018

Image quality and absorbed dose comparison of single‐ and dual‐source cone‐beam computed tomography

Hideharu Miura; Shuichi Ozawa; Toshiya Okazue; Atsushi Kawakubo; Kiyoshi Yamada; Yasushi Nagata

Abstract Purpose Dual‐source cone‐beam computed tomography (DCBCT) is currently available in the Vero4DRT image‐guided radiotherapy system. We evaluated the image quality and absorbed dose for DCBCT and compared the values with those for single‐source CBCT (SCBCT). Methods Image uniformity, Hounsfield unit (HU) linearity, image contrast, and spatial resolution were evaluated using a Catphan phantom. The rotation angle for acquiring SCBCT and DCBCT images is 215° and 115°, respectively. The image uniformity was calculated using measurements obtained at the center and four peripheral positions. The HUs of seven materials inserted into the phantom were measured to evaluate HU linearity and image contrast. The Catphan phantom was scanned with a conventional CT scanner to measure the reference HU for each material. The spatial resolution was calculated using high‐resolution pattern modules. Image quality was analyzed using ImageJ software ver. 1.49. The absorbed dose was measured using a 0.6‐cm3 ionization chamber with a 16‐cm‐diameter cylindrical phantom, at the center and four peripheral positions of the phantom, and calculated using weighted cone‐beam CT dose index (CBCTDI w). Results Compared with that of SCBCT, the image uniformity of DCBCT was slightly reduced. A strong linear correlation existed between the measured HU for DCBCT and the reference HU, although the linear regression slope was different from that of the reference HU. DCBCT had poorer image contrast than did SCBCT, particularly with a high‐contrast material. There was no significant difference between the spatial resolutions of SCBCT and DCBCT. The absorbed dose for DCBCT was higher than that for SCBCT, because in DCBCT, the two x‐ray projections overlap between 45° and 70°. Conclusions We found that the image quality was poorer and the absorbed dose was higher for DCBCT than for SCBCT in the Vero4DRT.


International Journal of Cancer Therapy and Oncology | 2017

Stability assessment of radiation isocenter with the gimbaled linac system

Hideharu Miura; Shuichi Ozawa; Shintaro Tsuda; Kiyoshi Yamada; Yasushi Nagata

Purpose: We report the results of our year-long radiation isocenter accuracy verification for daily quality assurance (QA) implementation on a Vero4DRT system. Methods: The radiation isocenter was calculated using a cube phantom with a steel ball of diameter 10 mm fixed to the center of the phantom. A single photon beam was set with a field size of 100 × 100 mm 2 . Coincidence of the centroid of the steel ball at kiloVolt X-ray imaging isocenter and megaVolt beam radiation isocenter at each gantry and ring angle was tested. This procedure was performed for gantry angles of 0°, 90°, 180°, and 270°, and ring angles of 0°, 20°, and 340°. The centroid of the steel ball and the center of the radiation field were calculated to analyze the radiation isocenter error. This analysis was automatically calculated using the Daily Check tool in the Vero4DRT system. This QA was implemented between 24 August 2015 and 23 August 2016. Results: The average and standard deviation for pan and tilt directions were 0.12 ± 0.10 mm and -0.20 ± 0.13 mm, respectively. The maximum radiation isocenter accuracy error was 0.50 mm in both directions. Conclusion: The radiation isocenter alignment for the one year duration of the experiment was performed with high accuracy.


Australasian Physical & Engineering Sciences in Medicine | 2017

Proposed patient motion monitoring system using feature point tracking with a web camera

Hideharu Miura; Shuichi Ozawa; Takaaki Matsuura; Kiyoshi Yamada; Yasushi Nagata

Patient motion monitoring systems play an important role in providing accurate treatment dose delivery. We propose a system that utilizes a web camera (frame rate up to 30 fps, maximum resolution of 640 × 480 pixels) and an in-house image processing software (developed using Microsoft Visual C++ and OpenCV). This system is simple to use and convenient to set up. The pyramidal Lucas–Kanade method was applied to calculate motions for each feature point by analysing two consecutive frames. The image processing software employs a color scheme where the defined feature points are blue under stable (no movement) conditions and turn red along with a warning message and an audio signal (beeping alarm) for large patient movements. The initial position of the marker was used by the program to determine the marker positions in all the frames. The software generates a text file that contains the calculated motion for each frame and saves it as a compressed audio video interleave (AVI) file. We proposed a patient motion monitoring system using a web camera, which is simple and convenient to set up, to increase the safety of treatment delivery.


Journal of Applied Clinical Medical Physics | 2016

Quality assurance of a gimbaled head swing verification using feature point tracking

Hideharu Miura; Shuichi Ozawa; Tsubasa Enosaki; Atsushi Kawakubo; Fumika Hosono; Kiyoshi Yamada; Yasushi Nagata

Abstract To perform dynamic tumor tracking (DTT) for clinical applications safely and accurately, gimbaled head swing verification is important. We propose a quantitative gimbaled head swing verification method for daily quality assurance (QA), which uses feature point tracking and a web camera. The web camera was placed on a couch at the same position for every gimbaled head swing verification, and could move based on a determined input function (sinusoidal patterns; amplitude: ± 20 mm; cycle: 3 s) in the pan and tilt directions at isocenter plane. Two continuous images were then analyzed for each feature point using the pyramidal Lucas–Kanade (LK) method, which is an optical flow estimation algorithm. We used a tapped hole as a feature point of the gimbaled head. The period and amplitude were analyzed to acquire a quantitative gimbaled head swing value for daily QA. The mean ± SD of the period were 3.00 ± 0.03 (range: 3.00–3.07) s and 3.00 ± 0.02 (range: 3.00–3.07) s in the pan and tilt directions, respectively. The mean ± SD of the relative displacement were 19.7 ± 0.08 (range: 19.6–19.8) mm and 18.9 ± 0.2 (range: 18.4–19.5) mm in the pan and tilt directions, respectively. The gimbaled head swing was reliable for DTT. We propose a quantitative gimbaled head swing verification method for daily QA using the feature point tracking method and a web camera. Our method can quantitatively assess the gimbaled head swing for daily QA from baseline values, measured at the time of acceptance and commissioning.


International Journal of Cancer Therapy and Oncology | 2016

Quality assurance for dynamic tumor tracking using the Vero4DRT system

Hideharu Miura; Shuichi Ozawa; Shintaro Tsuda; Masahiro Hayata; Kiyoshi Yamada; Yasushi Nagata


Reports of Practical Oncology & Radiotherapy | 2017

Evaluation of cone-beam computed tomography image quality assurance for Vero4DRT system

Hideharu Miura; Shuichi Ozawa; Masahiro Hayata; Shintarou Tsuda; Tsubasa Enosaki; Kiyoshi Yamada; Yasushi Nagata


International Journal of Medical Physics, Clinical Engineering and Radiation Oncology | 2015

Beam Characteristics at Low Dose Monitor Unit Settings for Vero4DRT

Hideharu Miura; Shuichi Ozawa; Shintaro Tsuda; Masahiro Hayata; Kiyoshi Yamada; Yasushi Nagata

Collaboration


Dive into the Kiyoshi Yamada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideharu Miura

Hyogo College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge