Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideho Miura is active.

Publication


Featured researches published by Hideho Miura.


Theoretical and Applied Genetics | 2000

Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat

Kiyoaki Kato; Hideho Miura; S. Sawada

Abstract Chromosome 5A of wheat is known to carry a number of genes affecting adaptability and productivity. To localize quantitative trait loci (QTLs) controlling grain yield and its components, an RFLP map was constructed from 118 single-chromosome recombinant lines derived from the F1 between Chinese Spring (Cappelle-Desprez 5A) and Chinese Spring (Triticum spelta 5A). The map was combined with the field-trial data scored over 3 years. A total of five regions in chromosome 5A contributed effects on yield traits. Increases in grain yield, 50-grain weight and spikelet number/ear were determined by complementary QTL alleles from both parents. The effects associated with the vernalization requirement gene Vrn-A1 or a closely linked QTL were significant only in the favorable growing season where the later-flowering vrn-A1 allele from Cappelle-Desprez 5A produced a higher tiller number/plant and spikelet number/ear. The effects of the ear morphology gene q or closely linked QTL(s) were detected for grain yield and ear grain weight. Three other QTLs with minor effects were dispersed along chromosome 5A. These QTLs had large interactions with years due to changes in the magnitude of the significant response. The alleles from T. spelta, however, conferred a higher yield performance.


Theoretical and Applied Genetics | 2001

Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes

Kiyoaki Kato; W. Nakamura; T. Tabiki; Hideho Miura; S. Sawada

Abstract Three quantitative trait loci (QTLs) controlling seed dormancy were detected on group 4 chromosomes of wheat (Triticum aestivum L.) using 119 doubled haploid lines (DHLs) derived from a cross between AC Domain and Haruyutaka. A major QTL, designated QPhs.ocs-4A.1, was identified within the marker interval between Xcdo795 and Xpsr115 in the proximal region of the long arm of chromosome 4A. Two minor QTLs, QPhs.ocs-4B.2 on 4B and QPhs.ocs-4D.2 on 4D, were flanked by common markers, Xbcd1431.1 and Xbcd1431.2 in the terminal region of the long arms, suggesting a homoeologous relationship. These three QTLs explained more than 80% of the total phenotypic variance in seed dormancy of DHLs grown in the field and under glasshouse conditions. The AC Domain alleles at the three QTLs contributed to increasing seed dormancy. Comparative maps across wheat, barley and rice demonstrated the possibility of a homoeologous relationship between QPhs.ocs-4A.1 and the barley gene SD4, while no significant effects of the chromosome regions of wheat and barley orthologous to rice chromosome 3 region carrying a major seed dormancy QTL were detected.


The Plant Cell | 2011

A Wheat Homolog of MOTHER OF FT AND TFL1 Acts in the Regulation of Germination

Shingo Nakamura; Fumitaka Abe; Hiroyuki Kawahigashi; Kou Nakazono; Akemi Tagiri; Takashi Matsumoto; Shigeko Utsugi; Taiichi Ogawa; Hirokazu Handa; Hiroki Ishida; Masahiko Mori; Kanako Kawaura; Yasunari Ogihara; Hideho Miura

Among the environmental signals affecting seed development, temperature is the most influential in the formation of seed dormancy in wheat. In this study, transcriptional profiling of the effects of temperature on seed dormancy formation identified MFT as a candidate gene for seed dormancy regulation. Seed dormancy is an adaptive mechanism and an important agronomic trait. Temperature during seed development strongly affects seed dormancy in wheat (Triticum aestivum) with lower temperatures producing higher levels of seed dormancy. To identify genes important for seed dormancy, we used a wheat microarray to analyze gene expression in embryos from mature seeds grown at lower and higher temperatures. We found that a wheat homolog of MOTHER OF FT AND TFL1 (MFT) was upregulated after physiological maturity in dormant seeds grown at the lower temperature. In situ hybridization analysis indicated that MFT was exclusively expressed in the scutellum and coleorhiza. Mapping analysis showed that MFT on chromosome 3A (MFT-3A) colocalized with the seed dormancy quantitative trait locus (QTL) QPhs.ocs-3A.1. MFT-3A expression levels in a dormant cultivar used for the detection of the QTL were higher after physiological maturity; this increased expression correlated with a single nucleotide polymorphism in the promoter region. In a complementation analysis, high levels of MFT expression were correlated with a low germination index in T1 seeds. Furthermore, precocious germination of isolated immature embryos was suppressed by transient introduction of MFT driven by the maize (Zea mays) ubiquitin promoter. Taken together, these results suggest that MFT plays an important role in the regulation of germination in wheat.


Cereal Chemistry | 2002

Dough and Baking Properties of High-Amylose and Waxy Wheat Flours

Naofumi Morita; Tomoko Maeda; Megumi Miyazaki; Makoto Yamamori; Hideho Miura; Ichiro Ohtsuka

ABSTRACT The dough properties and baking qualities of a novel high-amylose wheat flour (HAWF) and a waxy wheat flour (WWF) (both Triticum aestivum L.) were investigated by comparing them with common wheat flours. HAWF and WWF had more dietary fiber than Chinese Spring flour (CSF), a nonwaxy wheat flour. Also, HAWF contained larger amounts of lipids and proteins than WWF and CSF. There were significant differences in the amylose and amylopectin contents among all samples tested. Farinograph data showed water absorptions of HAWF and WWF were significantly higher than that of CSF, and both flours showed poorer flour qualities than CSF. The dough of WWF was weaker and less stable than that of CSF, whereas HAWF produced a harder and more viscous dough than CSF. Differential scanning calorimetry data showed that starch in HAWF dough gelatinized at a lower temperature in the baking process than the starches in doughs of WWF and CSF. The starch in a WWF suspension had a larger enthalpy of gelatinization than thos...


Theoretical and Applied Genetics | 1999

QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat

Kiyoaki Kato; Hideho Miura; S. Sawada

Abstract Chromosome 5A of wheat carries major gene loci for agronomic traits including the vernalization requirement (Vrn-A1) and ear morphology (Q). To determine whether the genetic variation for ear emergence time and plant height is attributable to either of these major genes as pleiotropic effects or independent QTL, we combined a RFLP map constructed from 120 recombinant substitution lines derived from a cross between ‘Chinese Spring’ (Cappelle-Desprez 5A) and CS(Triticum spelta 5A) with data collected from field trials over 3 years. For ear emergence time the main effects on flowering time were by Vrn-A1 and QEet.ocs-5A.1, the latter a QTL in the 28.6-cM Xcdo584/Q interval linked to Q by less than 10 cM. The CS(T. spelta 5A) allele at QEet.ocs-5A.1 contributed to an earlier ear emergence time by 2.7–6.0 days, which was approximately equal to the effects of Vrn-A1. For plant height, three QTLs were identified on the long arm and linked in repulsion. The CS(T. spelta 5A) allele at Vrn-A1 or closely linked to Xfba068 contributed to a height reduction of 3.5–6.1 cm, whereas both the Q allele and Qt.ocs-5A.1 allele within the Xcdo1088/Xbcd9 interval from CS(Cappelle-Desprez 5A) produced a shorter plant. When plant height was partitioned into culm length and ear length, the Vrn-A1 allele and CS(Cappelle-Desprez 5A) allele at QCl.ocs-5A.1 within the Xcd1088/Xbcd9 interval were found to contribute to a shorter culm. CS(T. spelta 5A) allele at q was a major determinant of a long ear, together with minor effects at QEl.ocs-5A.1 within the Xcdo1088/Xbcd9 interval.


Theoretical and Applied Genetics | 1999

Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat

E. Araki; Hideho Miura; S. Sawada

Abstract Chromosome 4A of wheat carries the Wx-B1 gene encoding the granule-bound starch synthase involved in amylose synthesis in the endosperm. To determine the pleiotropic effects of this locus and effects of independent QTLs on agronomic traits, genetical analysis of chromosome 4A was conducted using 98 single-chromosome recombinant substitution lines derived from a cross of Chinese Spring and Chinese Spring (Kanto107 4A) with a low amylose content due to the null Wx-B1b allele. For amylose content, most of the genetic variation was explained by the allelic difference at the Wx-B1 locus. An additional QTL of minor effect was mapped in the 6.2-cM Xbcd1738/Xcdo1387 interval on the short arm, where the allele from Kanto107 led to an increase in amylose content. Field trials over two seasons revealed a pleiotropic effect of Wx-B1, or else the effect of a closely linked QTL, on ear emergence time. A QTL linked to Wx-B1 was detected for plant height. For plant yield and its components, there was no evidence for significant main effects associated with Wx-B1 or adjacent regions. One plant-yield QTL was identified by RFLP markers on the short arm and this was identical to QTLs controlling spikelet number/ear and grain weight/ear. At these QTLs for agronomic traits, alleles from Kanto107 contributed to an earlier emergence time, a height reduction and an yield increase.


Euphytica | 1994

Endosperm starch properties in several wheat cultivars preferred for Japanese noodles

Hideho Miura; Sachiko Tanii

To characterize superior genotypes for the white Japanese noodle, endosperm starch properties including amylose content, flour peak viscosity and starch-granule bound Waxy (Wx) proteins were compared using several cultivars preferred for noodle manufacture. Amylose contents from three seasons trials and flour peak viscosity from two seasons trials varied among cultivars. Low amylose content was a common property in the noodle cultivars, whereas a high peak viscosity was not always the case. When the Wx proteins were analyzed by sodium dodecylsulfate polyacrylamide gel electrophoresis, a clear reduction in the amount of low molecular weight protein or a lack of the high molecular weight protein occurred in the noodle cultivars. Segregation of Wx proteins was detectable in a B1F1 population, indicating that the Wx protein analysis has a potential as a surrogate of selecting low amylose genotypes in early generations.


Theoretical and Applied Genetics | 1994

Genetic control of amylose content in wheat endosperm starch and differential effects of three Wx genes.

Hideho Miura; S. Tanii; T. Nakamura; N. Watanabe

The endosperm starch of the wheat grain is composed of amylose and amylopectin. Genetic manipulation of the ratio of amylose to amylopectin or the amylose content could bring about improved texture and quality of wheat flour. The chromosomal locations of genes affecting amylose content were investigated using a monosomic series of Chinese Spring (CS) and a set of Cheyenne (CNN) chromosome substitution lines in the CS genetic background. Trials over three seasons revealed that a decrease in amylose content occurred in monosomic 4A and an increase in monosomic 7B. Allelic variation between CS and CNN was suggested for the genes on chromosomes 4A and 7B. To examine the effects of three Waxy (Wx) genes which encode a granule-bound starch synthase (Wx protein), the Wx proteins from CS monosomics of interest were analyzed using SDS-PAGE. The amount of the Wx protein coded by the Wx-B1 gene on chromosome arm 4AL was reduced in monosomic 4A, and thus accounted for its decreased amylose content. The amounts of two other Wx proteins coded by the Wx-A1 and Wx-D1 genes on chromosome arms 7AS and 7DS, respectively, showed low levels of protein in the monosomics but no effect on amylose content. The effect of chromosome 7B on the level of amylose suggested the presence of a regulator gene which suppresses the activities of the Wx genes.


Euphytica | 2002

Development of near-isogenic lines of wheat carrying different null Wx alleles and their starch properties

Hideho Miura; M.H.A. Wickramasinghe; R.M. Subasinghe; E. Araki; K. Komae

The granule-bound starch synthase (GBSS I) encoded by the Wxgenes, is involved in amylose synthesis. For analyses of mechanisms of amylose synthesis and associated starch properties in hexaploid wheat, eight possible genotypes having different combinations of the three null alleles at the Wx loci with a common genetic background are a prerequisite. A near-isogenic population of doubled haploid (DH) lines was produced from Chinese Spring × waxy Chinese Spring F1 plants using the wheat × maize method. The Wx protein phenotypes of the DH progeny were examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and found that the null alleles at each of the three Wx loci segregated in a Mendelian fashion. A field trial demonstrated no differences between the eight types for ear emergence time, plant height and grain yield traits. Amylose content in the endosperm starch was highest in the wild type while lowest in the waxy type having no Wx proteins. Comparison between single null types and double null types indicated that the amylose synthesis capacity of Wx-A1a allele is the lowest. Pasting properties of starch are the highest in the waxy type, followed by the double null types. Consequently, both peak viscosity and breakdown were negatively correlated with amylose content. The chain-length distribution analysis of amylopectin structure revealed no clear difference among the eight types,suggesting that the reduced GBSS I activity due to introgression of the null Wx alleles does not affect either the chain length or the degree of branching of amylopectin.


Theoretical and Applied Genetics | 1996

Dosage effects of the three Wx genes on amylose synthesis in wheat endosperm.

Hideho Miura; A. Sugawara

Amylose synthesis in wheat endosperm is mainly controlled by the granule-bound starch synthase of about 60 kDa, the so-called waxy (Wx) protein. The Wx proteins are the product of the Wx genes at a triplicate set of single-copy homoeoloci located on chromosomes 7A (Wx-A1), 4A (Wx-B1) and 7D (Wx-D1). Using ‘Chinese Spring’ and its aneuploid lines, including nullisomic-tetrasomics, tetrasomics, ditelosomics and deletion stocks, together with single-chromosome substitution lines for these chromosomes, the effects of varying the dosage of whole chromosomes and chromosome arms, as well as the effects of null alleles, upon amylose synthesis were investigated. Nullisomic 4A and the deletion of chromosome segments carrying the Wx-B1 gene reduced the amylose content by more than 3%. A reasonable agreement was found in the substitution lines. This confirms that the absence of the Wx-B1 gene, or else substitution of this gene by its null allele, has the most striking effect on decreasing amylose synthesis. The removal of chromosomes carrying either the Wx-A1 or the Wx-D1 gene reduces the amylose content by less than 2%. A similar reduction was revealed by substitution of these two genes by the null alleles. Double dosages of chromosomes 7A, 4A and 7D did not increase amylose content, while the tetrasomic chromosomes produced more of the respective Wx proteins. This suggests that a certain level of Wx gene activity or of the Wx proteins led to the maximum amount of amylose.

Collaboration


Dive into the Hideho Miura's collaboration.

Top Co-Authors

Avatar

Kiyoaki Kato

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Hiroaki Yamauchi

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

S. Sawada

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Zenta Nishio

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chie Matsuura-Endo

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

E. Araki

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Kazumitsu Onishi

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Masahiko Mori

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge