Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideki Sumimoto is active.

Publication


Featured researches published by Hideki Sumimoto.


FEBS Journal | 2008

Structure, regulation and evolution of Nox‐family NADPH oxidases that produce reactive oxygen species

Hideki Sumimoto

NADPH oxidases of the Nox family exist in various supergroups of eukaryotes but not in prokaryotes, and play crucial roles in a variety of biological processes, such as host defense, signal transduction, and hormone synthesis. In conjunction with NADPH oxidation, Nox enzymes reduce molecular oxygen to superoxide as a primary product, and this is further converted to various reactive oxygen species. The electron‐transferring system in Nox is composed of the C‐terminal cytoplasmic region homologous to the prokaryotic (and organelle) enzyme ferredoxin reductase and the N‐terminal six transmembrane segments containing two hemes, a structure similar to that of cytochrome b of the mitochondrial bc1 complex. During the course of eukaryote evolution, Nox enzymes have developed regulatory mechanisms, depending on their functions, by inserting a regulatory domain (or motif) into their own sequences or by obtaining a tightly associated protein as a regulatory subunit. For example, one to four Ca2+‐binding EF‐hand motifs are present at the N‐termini in several subfamilies, such as the respiratory burst oxidase homolog (Rboh) subfamily in land plants (the supergroup Plantae), the NoxC subfamily in social amoebae (the Amoebozoa), and the Nox5 and dual oxidase (Duox) subfamilies in animals (the Opisthokonta), whereas an SH3 domain is inserted into the ferredoxin–NADP+ reductase region of two Nox enzymes in Naegleria gruberi, a unicellular organism that belongs to the supergroup Excavata. Members of the Nox1–4 subfamily in animals form a stable heterodimer with the membrane protein p22phox, which functions as a docking site for the SH3 domain‐containing regulatory proteins p47phox, p67phox, and p40phox; the small GTPase Rac binds to p67phox (or its homologous protein), which serves as a switch for Nox activation. Similarly, Rac activates the fungal NoxA via binding to the p67phox‐like protein Nox regulator (NoxR). In plants, on the other hand, this GTPase directly interacts with the N‐terminus of Rboh, leading to superoxide production. Here I describe the regulation of Nox‐family oxidases on the basis of three‐dimensional structures and evolutionary conservation.


Journal of The American Society of Nephrology | 2003

Protein Kinase C–Dependent Increase in Reactive Oxygen Species (ROS) Production in Vascular Tissues of Diabetes: Role of Vascular NAD(P)H Oxidase

Toyoshi Inoguchi; Toshiyo Sonta; Hirotaka Tsubouchi; Takashi Etoh; Maiko Kakimoto; Noriyuki Sonoda; Naoichi Sato; Naotaka Sekiguchi; Kunihisa Kobayashi; Hideki Sumimoto; Hideo Utsumi; Hajime Nawata

Hyperglycemia seems to be an important causative factor in the development of micro- and macrovascular complications in patients with diabetes. Several hypotheses have been proposed to explain the adverse effects of hyperglycemia on vascular cells. Both protein kinase C (PKC) activation and oxidative stress theories have increasingly received attention in recent years. This article shows a PKC-dependent increase in oxidative stress in diabetic vascular tissues. High glucose level stimulated reactive oxygen species (ROS) production via a PKC-dependent activation of NAD(P)H oxidase in cultured aortic endothelial cells, smooth muscle cells, and renal mesangial cells. In addition, expression of NAD(P)H oxidase components were shown to be upregulated in vascular tissues and kidney from animal models of diabetes. Furthermore, several agents that were expected to block the mechanism of a PKC-dependent activation of NAD(P)H oxidase clearly inhibited the increased oxidative stress in diabetic animals, as assessed by in vivo electron spin resonance method. Taken together, these findings strongly suggest that the PKC-dependent activation of NAD(P)H oxidase may be an essential mechanism responsible for increased oxidative stress in diabetes.


The EMBO Journal | 2006

TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy.

Naoya Onohara; Motohiro Nishida; Ryuji Inoue; Hiroyuki Kobayashi; Hideki Sumimoto; Yoji Sato; Yasuo Mori; Taku Nagao; Hitoshi Kurose

Angiotensin (Ang) II participates in the pathogenesis of heart failure through induction of cardiac hypertrophy. Ang II‐induced hypertrophic growth of cardiomyocytes is mediated by nuclear factor of activated T cells (NFAT), a Ca2+‐responsive transcriptional factor. It is believed that phospholipase C (PLC)‐mediated production of inositol‐1,4,5‐trisphosphate (IP3) is responsible for Ca2+ increase that is necessary for NFAT activation. However, we demonstrate that PLC‐mediated production of diacylglycerol (DAG) but not IP3 is essential for Ang II‐induced NFAT activation in rat cardiac myocytes. NFAT activation and hypertrophic responses by Ang II stimulation required the enhanced frequency of Ca2+ oscillation triggered by membrane depolarization through activation of DAG‐sensitive TRPC channels, which leads to activation of L‐type Ca2+ channel. Patch clamp recordings from single myocytes revealed that Ang II activated DAG‐sensitive TRPC‐like currents. Among DAG‐activating TRPC channels (TRPC3, TRPC6, and TRPC7), the activities of TRPC3 and TRPC6 channels correlated with Ang II‐induced NFAT activation and hypertrophic responses. These data suggest that DAG‐induced Ca2+ signaling pathway through TRPC3 and TRPC6 is essential for Ang II‐induced NFAT activation and cardiac hypertrophy.


Journal of Biological Chemistry | 2003

Novel Human Homologues of p47phox and p67phox Participate in Activation of Superoxide-producing NADPH Oxidases

Ryu Takeya; Noriko Ueno; Keiichiro Kami; Masahiko Taura; Motoyuki Kohjima; Tomoko Izaki; Hiroyuki Nunoi; Hideki Sumimoto

Abstract The catalytic core of a superoxide-producing NADPH oxidase (Nox) in phagocytes is gp91phox/Nox2, a membrane-integrated protein that forms a heterodimer with p22phox to constitute flavocytochrome b558. The cytochrome becomes activated by interacting with the adaptor proteins p47phox and p67phox as well as the small GTPase Rac. Here we describe the cloning of human cDNAs for novel proteins homologous to p47phox and p67phox, designated p41nox and p51nox, respectively; the former is encoded by NOXO1 (Nox organizer 1), and the latter is encoded by NOXA1 (Nox activator 1). The novel homologue p41nox interacts with p22phox via the two tandem SH3 domains, as does p47phox. The protein p51nox as well as p67phox can form a complex with p47phox and with p41nox via the C-terminal SH3 domain and binds to GTP-bound Rac via the N-terminal domain containing four tetratricopeptide repeat motifs. These bindings seem to play important roles, since p47phox and p67phox activate the phagocyte oxidase via the same interactions. Indeed, p41nox and p51nox are capable of replacing the corresponding classical homologue in activation of gp91phox. Nox1, a homologue of gp91phox, also can be activated in cells, when it is coexpressed with p41nox and p51nox, with p41nox and p67phox, or with p47phox and p51nox; in the former two cases, Nox1 is partially activated without any stimulants added, suggesting that p41nox is normally in an active state. Thus, the novel homologues p41nox and p51nox likely function together or in combination with a classical one, thereby activating the two Nox family oxidases.


Genes to Cells | 2005

The superoxide‐producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells

Junya Kuroda; Kazunori Nakagawa; Tomoko Yamasaki; Kei-ichiro Nakamura; Ryu Takeya; Futoshi Kuribayashi; Shinobu Imajoh-Ohmi; Kazuhiko Igarashi; Yosaburo Shibata; Katsuo Sueishi; Hideki Sumimoto

The superoxide‐producing NAD(P)H oxidase Nox4 was initially identified as an enzyme that is highly expressed in the kidney and is possibly involved in oxygen sensing and cellular senescence. Although the oxidase is also abundant in vascular endothelial cells, its role remains to be elucidated. Here we show that Nox4 preferentially localizes to the nucleus of human umbilical vein endothelial cells (HUVECs), by immunocytochemistry and immunoelectron microscopy using three kinds of affinity‐purified antibodies raised against distinct immunogens from human Nox4. Silencing of Nox4 by RNA interference (RNAi) abrogates nuclear signals given with the antibodies, confirming the nuclear localization of Nox4. The nuclear fraction of HUVECs exhibits an NAD(P)H‐dependent superoxide‐producing activity in a manner dependent on Nox4, which activity can be enhanced upon cell stimulation with phorbol 12‐myristate 13‐acetate. This stimulant also facilitates gene expression as estimated in the present transfection assay of HUVECs using a reporter regulated by the Maf‐recognition element MARE, a DNA sequence that constitutes a part of oxidative stress response. Both basal and stimulated transcriptional activities are impaired by RNAi‐mediated Nox4 silencing. Thus Nox4 appears to produce superoxide in the nucleus of HUVECs, thereby regulating gene expression via a mechanism for oxidative stress response.


Diabetologia | 2003

Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibity by interventive insulin treatment.

Takashi Etoh; Toyoshi Inoguchi; Maiko Kakimoto; Noriyuki Sonoda; Kunihisa Kobayashi; J. Kuroda; Hideki Sumimoto; Hajime Nawata

Aim/hypothesisAn increased production of reactive oxygen species (ROS) could contribute to the development of diabetic nephropathy. NAD(P)H oxidase might be an important source of ROS production in kidney as reported in blood vessels. In this study, we show the increased expression of essential subunits of NAD(P)H oxidase, NOX4 and p22phox, in the kidney of diabetic rats.MethodsThe levels of mRNA of both NOX4 and p22phox were evaluated in kidney from streptozotocin-induced diabetic rats and age-matched control rats at 4 and 8 weeks after onset of diabetes by Northern blot analysis. The localization and expression levels of these components and 8-hydroxy-deoxyguanosine (8-OHdG), which is a marker of ROS-induced DNA damage, were also evaluated by immunostaining.ResultsThe levels of both NOX4 and p22phox mRNA were increased in the kidney of diabetic rats as compared with control rats. Immunostaining analysis showed that the expression levels of NOX4 and p22phox were clearly increased in both distal tubular cells and glomeruli from diabetic rats. Both the localization and the expression levels of these components were in parallel with those of 8-OHdG. Interventive insulin treatment for 2 weeks completely restored the increased levels of these components in the diabetic kidney to control levels in parallel with those of 8-OHdG.Conclusions/interpretationThis study provides evidence that NAD(P)H oxidase subunits, NOX4 and p22phox, were increased in the kidney of diabetic rats. Thus, NAD(P)H-dependent overproduction of ROS could cause renal tissue damage in diabetes. This might contribute to the development of diabetic nephropathy.


Journal of Biological Chemistry | 1999

Mechanism for Phosphorylation-induced Activation of the Phagocyte NADPH Oxidase Protein p47 phox TRIPLE REPLACEMENT OF SERINES 303, 304, AND 328 WITH ASPARTATES DISRUPTS THE SH3 DOMAIN-MEDIATED INTRAMOLECULAR INTERACTION IN p47 phox , THEREBY ACTIVATING THE OXIDASE

Tetsuro Ago; Hiroyuki Nunoi; Takashi Ito; Hideki Sumimoto

Activation of the superoxide-producing phagocyte NADPH oxidase requires interaction between p47 phox and p22 phox , which is mediated via the SH3 domains of the former protein. This interaction is considered to be induced by exposure of the domains that are normally masked by an intramolecular interaction with the C-terminal region of p47 phox . Here we locate the intramolecular SH3-binding site at the region of amino acid residues 286–340, where Ser-303, Ser-304, and Ser-328 that are among several serines known to become phosphorylated upon cell stimulation exist. Simultaneous replacement of the three serines in p47 phox with aspartates or glutamates, each mimicking phosphorylated residues, is sufficient for disruption of the intramolecular interaction and resultant access to p22 phox . The triply mutated proteins are also capable of activating the NADPH oxidase without in vitro activators such as arachidonate under cell-free conditions. In a whole-cell system where expression of the wild-type p47 phox reconstitutes the stimulus-dependent oxidase activity, substitution of the kinase-insensitive residue alanine for Ser-328 as well as for Ser-303/Ser-304 leads to a defective production of superoxide. These findings suggest that phosphorylation of the three serines in p47 phox induces a conformational change to a state accessible to p22 phox , thereby activating the NADPH oxidase.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation

Tetsuro Ago; Futoshi Kuribayashi; Hidekazu Hiroaki; Ryu Takeya; Takashi Ito; Daisuke Kohda; Hideki Sumimoto

Protein–phosphoinositide interaction participates in targeting proteins to membranes where they function correctly and is often modulated by phosphorylation of lipids. Here we show that protein phosphorylation of p47phox, a cytoplasmic activator of the microbicidal phagocyte oxidase (phox), elicits interaction of p47phox with phosphoinositides. Although the isolated phox homology (PX) domain of p47phox can interact directly with phosphoinositides, the lipid-binding activity of this protein is normally suppressed by intramolecular interaction of the PX domain with the C-terminal Src homology 3 (SH3) domain, and hence the wild-type full-length p47phox is incapable of binding to the lipids. The W263R substitution in this SH3 domain, abrogating the interaction with the PX domain, leads to a binding of p47phox to phosphoinositides. The findings indicate that disruption of the intramolecular interaction renders the PX domain accessible to the lipids. This conformational change is likely induced by phosphorylation of p47phox, because protein kinase C treatment of the wild-type p47phox but not of a mutant protein with the S303/304/328A substitution culminates in an interaction with phosphoinositides. Furthermore, although the wild-type p47phox translocates upon cell stimulation to membranes to activate the oxidase, neither the kinase-insensitive p47phox nor lipid-binding-defective proteins, one lacking the PX domain and the other carrying the R90K substitution in this domain, migrates. Thus the protein phosphorylation-driven conformational change of p47phox enables its PX domain to bind to phosphoinositides, the interaction of which plays a crucial role in recruitment of p47phox from the cytoplasm to membranes and subsequent activation of the phagocyte oxidase.


The EMBO Journal | 2001

Novel modular domain PB1 recognizes PC motif to mediate functional protein-protein interactions.

Takashi Ito; Tetsuro Ago; Kazuhisa Ota; Hideki Sumimoto

Modular domains mediating specific protein–protein interactions play central roles in the formation of complex regulatory networks to execute various cellular activities. Here we identify a novel domain PB1 in the budding yeast protein Bem1p, which functions in polarity establishment, and mammalian p67phox, which activates the microbicidal phagocyte NADPH oxidase. Each of these specifically recognizes an evolutionarily conserved PC motif to interact directly with Cdc24p (an essential protein for cell polarization) and p40phox (a component of the signaling complex for the oxidase), respectively. Swapping the PB1 domain of Bem1p with that of p67phox, which abolishes its interaction with Cdc24p, confers on cells temperature‐ sensitive growth and a bilateral mating defect. These phenotypes are suppressed by a mutant Cdc24p harboring the PC motif‐containing region of p40phox, which restores the interaction with the altered Bem1p. This domain‐swapping experiment demonstrates that Bem1p function requires interaction with Cdc24p, in which the PB1 domain and the PC motif participate as responsible modules.


Nature Structural & Molecular Biology | 2001

Solution structure of the PX domain, a target of the SH3 domain

Hidekazu Hiroaki; Tetsuro Ago; Takashi Ito; Hideki Sumimoto; Daisuke Kohda

The phox homology (PX) domain is a novel protein module containing a conserved proline-rich motif. We have shown that the PX domain isolated from the human p47phox protein, a soluble subunit of phagocyte NADPH oxidase, binds specifically to the C-terminal SH3 domain derived from the same protein. The solution structure of p47 PX has an α + β structure with a novel folding motif topology and reveals that the proline-rich motif is presented on the molecular surface for easy recognition by the SH3 domain. The proline-rich motif of p47 PX in the free state adopts a distorted left-handed polyproline type II helix conformation.

Collaboration


Dive into the Hideki Sumimoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge