Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryu Takeya is active.

Publication


Featured researches published by Ryu Takeya.


Journal of Biological Chemistry | 2003

Novel Human Homologues of p47phox and p67phox Participate in Activation of Superoxide-producing NADPH Oxidases

Ryu Takeya; Noriko Ueno; Keiichiro Kami; Masahiko Taura; Motoyuki Kohjima; Tomoko Izaki; Hiroyuki Nunoi; Hideki Sumimoto

Abstract The catalytic core of a superoxide-producing NADPH oxidase (Nox) in phagocytes is gp91phox/Nox2, a membrane-integrated protein that forms a heterodimer with p22phox to constitute flavocytochrome b558. The cytochrome becomes activated by interacting with the adaptor proteins p47phox and p67phox as well as the small GTPase Rac. Here we describe the cloning of human cDNAs for novel proteins homologous to p47phox and p67phox, designated p41nox and p51nox, respectively; the former is encoded by NOXO1 (Nox organizer 1), and the latter is encoded by NOXA1 (Nox activator 1). The novel homologue p41nox interacts with p22phox via the two tandem SH3 domains, as does p47phox. The protein p51nox as well as p67phox can form a complex with p47phox and with p41nox via the C-terminal SH3 domain and binds to GTP-bound Rac via the N-terminal domain containing four tetratricopeptide repeat motifs. These bindings seem to play important roles, since p47phox and p67phox activate the phagocyte oxidase via the same interactions. Indeed, p41nox and p51nox are capable of replacing the corresponding classical homologue in activation of gp91phox. Nox1, a homologue of gp91phox, also can be activated in cells, when it is coexpressed with p41nox and p51nox, with p41nox and p67phox, or with p47phox and p51nox; in the former two cases, Nox1 is partially activated without any stimulants added, suggesting that p41nox is normally in an active state. Thus, the novel homologues p41nox and p51nox likely function together or in combination with a classical one, thereby activating the two Nox family oxidases.


Genes to Cells | 2005

The superoxide‐producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells

Junya Kuroda; Kazunori Nakagawa; Tomoko Yamasaki; Kei-ichiro Nakamura; Ryu Takeya; Futoshi Kuribayashi; Shinobu Imajoh-Ohmi; Kazuhiko Igarashi; Yosaburo Shibata; Katsuo Sueishi; Hideki Sumimoto

The superoxide‐producing NAD(P)H oxidase Nox4 was initially identified as an enzyme that is highly expressed in the kidney and is possibly involved in oxygen sensing and cellular senescence. Although the oxidase is also abundant in vascular endothelial cells, its role remains to be elucidated. Here we show that Nox4 preferentially localizes to the nucleus of human umbilical vein endothelial cells (HUVECs), by immunocytochemistry and immunoelectron microscopy using three kinds of affinity‐purified antibodies raised against distinct immunogens from human Nox4. Silencing of Nox4 by RNA interference (RNAi) abrogates nuclear signals given with the antibodies, confirming the nuclear localization of Nox4. The nuclear fraction of HUVECs exhibits an NAD(P)H‐dependent superoxide‐producing activity in a manner dependent on Nox4, which activity can be enhanced upon cell stimulation with phorbol 12‐myristate 13‐acetate. This stimulant also facilitates gene expression as estimated in the present transfection assay of HUVECs using a reporter regulated by the Maf‐recognition element MARE, a DNA sequence that constitutes a part of oxidative stress response. Both basal and stimulated transcriptional activities are impaired by RNAi‐mediated Nox4 silencing. Thus Nox4 appears to produce superoxide in the nucleus of HUVECs, thereby regulating gene expression via a mechanism for oxidative stress response.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation

Tetsuro Ago; Futoshi Kuribayashi; Hidekazu Hiroaki; Ryu Takeya; Takashi Ito; Daisuke Kohda; Hideki Sumimoto

Protein–phosphoinositide interaction participates in targeting proteins to membranes where they function correctly and is often modulated by phosphorylation of lipids. Here we show that protein phosphorylation of p47phox, a cytoplasmic activator of the microbicidal phagocyte oxidase (phox), elicits interaction of p47phox with phosphoinositides. Although the isolated phox homology (PX) domain of p47phox can interact directly with phosphoinositides, the lipid-binding activity of this protein is normally suppressed by intramolecular interaction of the PX domain with the C-terminal Src homology 3 (SH3) domain, and hence the wild-type full-length p47phox is incapable of binding to the lipids. The W263R substitution in this SH3 domain, abrogating the interaction with the PX domain, leads to a binding of p47phox to phosphoinositides. The findings indicate that disruption of the intramolecular interaction renders the PX domain accessible to the lipids. This conformational change is likely induced by phosphorylation of p47phox, because protein kinase C treatment of the wild-type p47phox but not of a mutant protein with the S303/304/328A substitution culminates in an interaction with phosphoinositides. Furthermore, although the wild-type p47phox translocates upon cell stimulation to membranes to activate the oxidase, neither the kinase-insensitive p47phox nor lipid-binding-defective proteins, one lacking the PX domain and the other carrying the R90K substitution in this domain, migrates. Thus the protein phosphorylation-driven conformational change of p47phox enables its PX domain to bind to phosphoinositides, the interaction of which plays a crucial role in recruitment of p47phox from the cytoplasm to membranes and subsequent activation of the phagocyte oxidase.


The EMBO Journal | 2002

Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67phox, Grb2 and Pex13p

Keiichiro Kami; Ryu Takeya; Hideki Sumimoto; Daisuke Kohda

The basic function of the Src homology 3 (SH3) domain is considered to be binding to proline‐rich sequences containing a PxxP motif. Recently, many SH3 domains, including those from Grb2 and Pex13p, were reported to bind sequences lacking a PxxP motif. We report here that the 22 residue peptide lacking a PxxP motif, derived from p47phox, binds to the C‐terminal SH3 domain from p67phox. We applied the NMR cross‐saturation method to locate the interaction sites for the non‐PxxP peptides on their cognate SH3 domains from p67phox, Grb2 and Pex13p. The binding site of the Grb2 SH3 partially overlapped the conventional PxxP‐binding site, whereas those of p67phox and Pex13p SH3s are located in different surface regions. The non‐PxxP peptide from p47phox binds to the p67phox SH3 more tightly when it extends to the N‐terminus to include a typical PxxP motif, which enabled the structure determination of the complex, to reveal that the non‐PxxP peptide segment interacted with the p67phox SH3 in a compact helix–turn–helix structure (PDB entry 1K4U).


Journal of Biological Chemistry | 2005

The NADPH Oxidase Nox3 Constitutively Produces Superoxide in a p22phox-dependent Manner ITS REGULATION BY OXIDASE ORGANIZERS AND ACTIVATORS

Noriko Ueno; Ryu Takeya; Kei Miyano; Hideaki Kikuchi; Hideki Sumimoto

Nox3, a member of the superoxide-producing NADPH oxidase (Nox) family, participates in otoconia formation in mouse inner ears, which is required for perception of balance and gravity. The activity of other Nox enzymes such as gp91phox/Nox2 and Nox1 is known to absolutely require both an organizer protein (p47phox or Noxo1) andanactivatorprotein (p67phox or Noxa1); for the p47phox-dependent activation of these oxidases, treatment of cells with stimulants such as phorbol 12-myristate 13-acetate is also indispensable. Here we show that ectopic expression of Nox3 in various types of cells leads to phorbol 12-myristate 13-acetate-independent constitutive production of a substantial amount of superoxide under the conditions where gp91phox and Nox1 fail to generate superoxide, i.e. in the absence of the oxidase organizers and activators. Nox3 likely forms a functional complex with p22phox; Nox3 physically interacts with and stabilizes p22phox, and the Nox3-dependent superoxide production is totally dependent on p22phox. The organizers p47phox and Noxo1 are capable of enhancing the superoxide production by Nox3 in the absence of the activators, and the enhancement requires the interaction of the organizers with p22phox, further indicating a link between Nox3 and p22phox. The p47phox-enhanced Nox3 activity is further facilitated by p67phox or Noxa1, whereas the activators cancel the Noxo1-induced enhancement. On the other hand, the small GTPase Rac, essential for the gp91phox activity, is likely dispensable to the Nox3 system. Thus Nox3 functions together with p22phox as an enzyme constitutively producing superoxide, which can be distinctly regulated by combinatorial use of the organizers and activators.


Journal of Immunology | 2004

Role of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative burst response to toll-like receptor 5 signaling in large intestinal epithelial cells

Tsukasa Kawahara; Yuki Kuwano; Shigetada Teshima-Kondo; Ryu Takeya; Hideki Sumimoto; Kyoichi Kishi; Shohko Tsunawaki; Toshiya Hirayama; Kazuhito Rokutan

The NADPH oxidase 1 (Nox1) is a gp91phox homologue preferentially expressed in the colon. We have established primary cultures of guinea pig large intestinal epithelial cells giving 90% purity of surface mucous cells. These cells spontaneously released superoxide anion (O2−) of 160 nmol/mg protein/h and expressed the Nox1, p22phox, p67phox, and Rac1 mRNAs, but not the gp91phox, Nox4, p47phox, p40phox, and Rac2 mRNAs. They also expressed novel homologues of p47phox and p67phox (p41nox and p51nox, respectively). Human colon cancer cell lines (T84 and Caco2 cells) expressed the Nox1, p22phox, p51nox, and Rac1 mRNAs, but not the other NADPH component mRNAs, and secreted only small amounts of O2− (<2 nmol/mg protein/h). Cotransfection of p41nox and p51nox cDNAs in T84 cells enhanced PMA-stimulated O2− release 5-fold. Treatment of the transfected T84 cells with recombinant flagellin (rFliC) from Salmonella enteritidis further augmented the O2− release in association with the induction of Nox1 protein. The enhanced O2− production by cotransfection of p41nox and p51nox vectors further augmented the rFliC-stimulated IL-8 release from T84 cells. T84 cells expressed the Toll-like receptor 5, and rFliC rapidly phosphorylated TGF-β-activated kinase 1 and TGF-β-activated kinase 1-binding protein 1. A potent inhibitor for NF-κB (pyrrolidine dithiocarbamate) significantly blocked the rFliC-primed increase in O2− production and induction of Nox1 protein. These results suggest that p41nox and p51nox are involved in the Nox1 activation in surface mucous cells of the colon, and besides that, epithelial cells discern pathogenicities among bacteria to appropriately operate Nox1 for the host defense.


Genes to Cells | 2001

Human homologues of the Caenorhabditis elegans cell polarity protein PAR6 as an adaptor that links the small GTPases Rac and Cdc42 to atypical protein kinase C

Yukiko Noda; Ryu Takeya; Shigeo Ohno; Seiji Naito; Takashi Ito; Hideki Sumimoto

Asymmetric cell division in the Caenorhabditis elegans embryos requires products of par (partitioning defective) genes 1–6 and atypical protein kinase C (aPKC), whereas Cdc42 and Rac, members of the Rho family GTPases, play an essential role in cell polarity establishment in yeast and mammalian cells. However, little is known about a link between PAR proteins and the GTPases in cell polarization.


Journal of Biological Chemistry | 2006

Direct Involvement of the Small GTPase Rac in Activation of the Superoxide-producing NADPH Oxidase Nox1

Kei Miyano; Noriko Ueno; Ryu Takeya; Hideki Sumimoto

Activation of the non-phagocytic superoxide-producing NADPH oxidase Nox1, complexed with p22phox at the membrane, requires its regulatory soluble proteins Noxo1 and Noxa1. However, the role of the small GTPase Rac remained to be clarified. Here we show that Rac directly participates in Nox1 activation via interacting with Noxa1. Electropermeabilized HeLa cells, ectopically expressing Nox1, Noxo1, and Noxa1, produce superoxide in a GTP-dependent manner, which is abrogated by expression of a mutant Noxa1(R103E), defective in Rac binding. Superoxide production in Nox1-expressing HeLa and Caco-2 cells is decreased by depletion or sequestration of Rac; on the other hand, it is enhanced by expression of the constitutively active Rac1(Q61L), but not by that of a mutant Rac1 with the A27K substitution, deficient in binding to Noxa1. We also demonstrate that Nox1 activation requires membrane recruitment of Noxa1, which is normally mediated via Noxa1 binding to Noxo1, a protein tethered to the Nox1 partner p22phox: the Noxa1-Noxo1 and Noxo1-p22phox interactions are both essential for Nox1 activity. Rac likely facilitates the membrane localization of Noxa1: although Noxa1(W436R), defective in Noxo1 binding, neither associates with the membrane nor activates Nox1, the effects of the W436R substitution are restored by expression of Rac1(Q61L). The Rac-Noxa1 interaction also serves at a step different from the Noxa1 localization, because the binding-defective Noxa1(R103E), albeit targeted to the membrane, does not support superoxide production by Nox1. Furthermore, a mutant Noxa1 carrying the substitution of Ala for Val-205 in the activation domain, which is expected to undergo a conformational change upon Rac binding, fully localizes to the membrane but fails to activate Nox1.


The EMBO Journal | 2008

The mammalian formin FHOD1 is activated through phosphorylation by ROCK and mediates thrombin‐induced stress fibre formation in endothelial cells

Ryu Takeya; Kenichiro Taniguchi; Shuh Narumiya; Hideki Sumimoto

Formin‐family proteins, in the active state, form actin‐based structures such as stress fibres. Their activation mechanisms, however, are largely unknown except that mDia and its closely related formins can be activated by direct binding of the small GTPase Rho or Cdc42. Here we show that the Rho‐dependent protein kinase ROCK phosphorylates the C‐terminal residues Ser1131, Ser1137, and Thr1141 of formin homology domain protein 1 (FHOD1), a major endothelial formin that is normally autoinhibited by intramolecular interaction between the N‐ and C‐terminal regions. Phosphorylation of FHOD1 at the three residues fully disrupts the autoinhibitory interaction, which culminates in formation of stress fibres. We also demonstrate that, in vascular endothelial cells, thrombin, a vasoactive substance leading to Rho activation, elicits both FHOD1 phosphorylation and stress fibre formation in a ROCK‐dependent manner, and that FHOD1 depletion by RNA interference impairs thrombin‐induced stress fibre formation. Based on these findings we propose a novel mechanism for activation of formin‐family proteins: ROCK, activated by G protein‐coupled receptor ligands such as thrombin, directly phosphorylates FHOD1 at the C‐terminal region, which renders this formin in the active form, leading to stress fibre formation.


International Journal of Cancer | 2008

Enhanced expression of NADPH oxidase Nox4 in human gliomas and its roles in cell proliferation and survival

Tadahisa Shono; Nobuhiko Yokoyama; Toshio Uesaka; Junya Kuroda; Ryu Takeya; Tomoko Yamasaki; Toshiyuki Amano; Masahiro Mizoguchi; Satoshi Suzuki; Hiroaki Niiro; Kyoko Miyamoto; Koichi Akashi; Toru Iwaki; Hideki Sumimoto; Tomio Sasaki

Reactive oxygen species (ROS) have been attracting attention as mediators of various cell‐signaling pathways. Nox‐family NADPH oxidases have proven to be a major source of ROS production in various cell types and have crucial roles in various physiological and pathological processes. In this study, we show that Nox4, a member of Nox family, is prominently expressed in various neuroepithelial tumors by reverse transcription‐polymerase chain reaction (RT‐PCR) and immunohistochemical studies. We quantified Nox4 mRNA expression by real‐time PCR in tumor specimens from 58 patients with astrocytomas and found that the expression levels of Nox4 mRNA in glioblastomas (WHO grade IV) were significantly higher than those in other astrocytomas (WHO grade II and III). In addition, we show that specific knockdown of Nox4 expression by RNA interference results in cell‐growth inhibition and enhances induction of apoptosis by chemotherapeutic agents, such as cisplatin, in cultured glioma cell lines. Based on these observations, enhanced expression of Nox4 appears to be involved in cell proliferation and survival in glioma cells.

Collaboration


Dive into the Ryu Takeya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge