Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hidenari Hirata is active.

Publication


Featured researches published by Hidenari Hirata.


British Journal of Cancer | 2015

Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation

Sugimachi K; Tae Matsumura; Hidenari Hirata; Ryutaro Uchi; Masami Ueda; Hiroki Ueo; Yoshiaki Shinden; Tomohiro Iguchi; Hidetoshi Eguchi; Ken Shirabe; T Ochiya; Y. Maehara; K. Mimori

BackgroundPredictive biomarkers for the recurrence of hepatocellular carcinoma (HCC) have great benefit in the selection of treatment options, including liver transplantation (LT), for HCC. The purpose of this study was to identify specific microRNAs (miRs) in exosomes from the serum of patients with recurrent HCC and to validate these molecules as novel biomarkers for HCC recurrence.MethodsWe employed microarray-based expression profiling of miRs derived from exosomes in the serum of HCC patients to identify a biomarker that distinguishes between patients with and without HCC recurrence after LT. This was followed by the validation in a separate cohort of 59 HCC patients who underwent living related LT. The functions and potential gene targets of the recurrence-specific miRs were analysed using a database, clinical samples and HCC cell lines.ResultsWe found that miR-718 showed significantly different expression in the serum exosomes of HCC cases with recurrence after LT compared with those without recurrence. Decreased expression of miR-718 was associated with HCC tumour aggressiveness in the validated cohort series. We identified HOXB8 as a potential target gene of miR-718, and its upregulation was associated with poor prognosis.ConclusionCirculating miRs in serum exosomes have potential as novel biomarkers for predicting HCC recurrence.


PLOS Genetics | 2016

Integrated Multiregional Analysis Proposing a New Model of Colorectal Cancer Evolution.

Ryutaro Uchi; Yusuke Takahashi; Atsushi Niida; Teppei Shimamura; Hidenari Hirata; Keishi Sugimachi; Genta Sawada; Takeshi Iwaya; Junji Kurashige; Yoshiaki Shinden; Tomohiro Iguchi; Hidetoshi Eguchi; Kenichi Chiba; Yuichi Shiraishi; Genta Nagae; Kenichi Yoshida; Yasunobu Nagata; Hiroshi Haeno; Hirofumi Yamamoto; Hideshi Ishii; Yuichiro Doki; Hisae Iinuma; Shin Sasaki; Satoshi Nagayama; Kazutaka Yamada; Shinichi Yachida; Mamoru Kato; Tatsuhiro Shibata; Eiji Oki; Hiroshi Saeki

Understanding intratumor heterogeneity is clinically important because it could cause therapeutic failure by fostering evolutionary adaptation. To this end, we profiled the genome and epigenome in multiple regions within each of nine colorectal tumors. Extensive intertumor heterogeneity is observed, from which we inferred the evolutionary history of the tumors. First, clonally shared alterations appeared, in which C>T transitions at CpG site and CpG island hypermethylation were relatively enriched. Correlation between mutation counts and patients’ ages suggests that the early-acquired alterations resulted from aging. In the late phase, a parental clone was branched into numerous subclones. Known driver alterations were observed frequently in the early-acquired alterations, but rarely in the late-acquired alterations. Consistently, our computational simulation of the branching evolution suggests that extensive intratumor heterogeneity could be generated by neutral evolution. Collectively, we propose a new model of colorectal cancer evolution, which is useful for understanding and confronting this heterogeneous disease.


Scientific Reports | 2015

Rapid intraoperative visualization of breast lesions with γ-glutamyl hydroxymethyl rhodamine green

Hiroki Ueo; Yoshiaki Shinden; Taro Tobo; Ayako Gamachi; Mitsuaki Udo; Hisateru Komatsu; Sho Nambara; Tomoko Saito; Masami Ueda; Hidenari Hirata; Shotaro Sakimura; Yuki Takano; Ryutaro Uchi; Junji Kurashige; Sayuri Akiyoshi; Tomohiro Iguchi; Hidetoshi Eguchi; Keishi Sugimachi; Yoko Kubota; Yuichiro Kai; Kenji Shibuta; Yuko Kijima; Heiji Yoshinaka; Shoji Natsugoe; Masaki Mori; Yoshihiko Maehara; Masayo Sakabe; Mako Kamiya; John W. Kakareka; Thomas J. Pohida

We previously developed γ-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG) as a tool to detect viable cancer cells, based on the fact that the enzyme γ-glutamyltranspeptidase (GGT) is overexpressed on membranes of various cancer cells, but is not expressed in normal tissue. Cleavage of the probe by GGT generates green fluorescence. Here, we examined the feasibility of clinical application of gGlu-HMRG during breast-conserving surgery. We found that fluorescence derived from cleavage of gGlu-HMRG allowed easy discrimination of breast tumors, even those smaller than 1 mm in size, from normal mammary gland tissues, with 92% sensitivity and 94% specificity, within only 5 min after application. We believe this rapid, low-cost method represents a breakthrough in intraoperative margin assessment during breast-conserving surgery.


Cancer Research | 2016

Decreased Expression of Fructose-1,6-bisphosphatase Associates with Glucose Metabolism and Tumor Progression in Hepatocellular Carcinoma

Hidenari Hirata; Keishi Sugimachi; Hisateru Komatsu; Masami Ueda; Takaaki Masuda; Ryutaro Uchi; Shotaro Sakimura; Sho Nambara; Tomoko Saito; Yoshiaki Shinden; Tomohiro Iguchi; Hidetoshi Eguchi; Shuhei Ito; Kotaro Terashima; Katsumi Sakamoto; Masakazu Hirakawa; Hiroshi Honda; Koshi Mimori

Fructose-1,6-bisphosphatase (FBP1), the rate-limiting enzyme in gluconeogenesis, is reduced in expression in certain cancers where it has been hypothesized to act as a tumor suppressor, including in hepatocellular carcinoma (HCC). Here, we report functional evidence supporting this hypothesis, providing a preclinical rationale to develop FBP1 as a therapeutic target for HCC treatment. Three independent cohorts totaling 594 cases of HCC were analyzed to address clinical significance. Lower FBP1 expression associated with advanced tumor stage, poor overall survival, and higher tumor recurrence rates. In HCC cell lines, where endogenous FBP1 expression is low, engineering its ectopic overexpression inhibited tumor growth and intracellular glucose uptake by reducing aerobic glycolysis. In patient specimens, promoter methylation and copy-number loss of FBP1 were independently associated with decreased FBP1 expression. Similarly, FBP1 downregulation in HCC cell lines was also associated with copy-number loss. HCC specimens exhibiting low expression of FBP1 had a highly malignant phenotype, including large tumor size, poor differentiation, impaired gluconeogenesis, and enhanced aerobic glycolysis. The effects of FBP1 expression on prognosis and glucose metabolism were confirmed by gene set enrichment analysis. Overall, our findings established that FBP1 downregulation in HCC contributed to tumor progression and poor prognosis by altering glucose metabolism, and they rationalize further study of FBP1 as a prognostic biomarker and therapeutic target in HCC patients. Cancer Res; 76(11); 3265-76. ©2016 AACR.


Oncotarget | 2016

Somatic mutations in plasma cell-free DNA are diagnostic markers for esophageal squamous cell carcinoma recurrence

Masami Ueda; Tomohiro Iguchi; Takaaki Masuda; Yujiro Nakahara; Hidenari Hirata; Ryutaro Uchi; Atsushi Niida; Kota Momose; Shotaro Sakimura; Kenichi Chiba; Hidetoshi Eguchi; Shuhei Ito; Keishi Sugimachi; Makoto Yamasaki; Yutaka Suzuki; Satoru Miyano; Yuichiro Doki; Masaki Mori; Koshi Mimori

Objectives Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignancies owing to the high frequency of tumor recurrence. The identification of markers for early ESCC diagnosis and prediction of recurrence is expected to improve the long-term prognosis. Therefore, we searched for associations between tumor recurrence and cell-free DNA (cfDNA) mutations in blood plasma, which contains genetic markers for various cancer types. Experimental Design Genomic DNA from tumors and cfDNA from plasma were obtained from 13 patients undergoing treatment for newly diagnosed ESCC. Next-generation sequencing of cfDNA in plasma was performed to identify mutations in 53 cancer-related genes, in which recurrent mutations were previously detected in ESCC. cfDNA mutational profiles were compared before and after tumor resection in four patients. Furthermore, somatic mutations in serial plasma samples were monitored after treatment in four patients. Results We identified multiple concordant somatic mutations in cfDNA and primary tumor samples from 10 patients (83.3%) and in cfDNA and metastatic tumor samples from one patient (100%). Furthermore, the allele frequency of the concordant mutations in cfDNA changed concomitantly with tumor burden and increased approximately 6 months earlier than the detection of tumor recurrences by imaging tests in two patients. Conventional biomarkers, such as SCC and p53-Ab, did not reflect tumor recurrences. Conclusions The present multigene panel, which enabled the diagnosis of tumor recurrence with greater accuracy than did using standard tumor markers or imaging methods, is expected to greatly facilitate standard, postoperative follow-up monitoring in ESCC.


Oncotarget | 2017

Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer

Yuki Takano; Takaaki Masuda; Hisae Iinuma; Rui Yamaguchi; Kuniaki Sato; Taro Tobo; Hidenari Hirata; Yosuke Kuroda; Sho Nambara; Naoki Hayashi; Tomohiro Iguchi; Shuhei Ito; Hidetoshi Eguchi; Takahiro Ochiya; Katsuhiko Yanaga; Satoru Miyano; Koshi Mimori

A primary tumor can create a premetastatic niche in distant organs to facilitate the development of metastasis. The mechanism by which tumor cells communicate with host cells to develop premetastatic niches is unclear. We focused on the role of microRNA (miR) signaling in promoting metastasis. Here, we identified miR-203 as a signaling molecule between tumors and monocytes in metastatic colorectal cancer (CRC) patients. Notably, high expression of serum exosomal miR-203, a major form in circulation, was associated with distant metastasis and an independent poor prognostic factor, whereas low expression in tumor tissues was a poor prognostic factor in CRC patients. We also found that exosomes carrying miR-203 from CRC cells were incorporated into monocytes and miR-203 could promote the expression of M2 markers in vitro, suggesting miR-203 promoted the differentiation of monocytes to M2-tumor-associated macrophages (TAMs). In a xenograft mouse model, miR-203-transfected CRC cells developed more liver metastasis compared to control cells. In conclusion, serum exosomal miR-203 expression is a novel biomarker for predicting metastasis, possibly via promoting the differentiation of monocytes to M2-TAMs in CRC. Furthermore, we propose the concept of site-dependent functions for miR-203 in tumor progression.


PLOS ONE | 2015

An Integrative Analysis to Identify Driver Genes in Esophageal Squamous Cell Carcinoma.

Genta Sawada; Atsushi Niida; Hidenari Hirata; Hisateru Komatsu; Ryutaro Uchi; Teppei Shimamura; Yusuke Takahashi; Junji Kurashige; Tae Matsumura; Hiroki Ueo; Yuki Takano; Masami Ueda; Shotaro Sakimura; Yoshiaki Shinden; Hidetoshi Eguchi; Tomoya Sudo; Keishi Sugimachi; Makoto Yamasaki; Fumiaki Tanaka; Yuji Tachimori; Yoshiaki Kajiyama; Shoji Natsugoe; Hiromasa Fujita; Yoichi Tanaka; George A. Calin; Satoru Miyano; Yuichiro Doki; Masaki Mori; Koshi Mimori

Background Few driver genes have been well established in esophageal squamous cell carcinoma (ESCC). Identification of the genomic aberrations that contribute to changes in gene expression profiles can be used to predict driver genes. Methods We searched for driver genes in ESCC by integrative analysis of gene expression microarray profiles and copy number data. To narrow down candidate genes, we performed survival analysis on expression data and tested the genetic vulnerability of each genes using public RNAi screening data. We confirmed the results by performing RNAi experiments and evaluating the clinical relevance of candidate genes in an independent ESCC cohort. Results We found 10 significantly recurrent copy number alterations accompanying gene expression changes, including loci 11q13.2, 7p11.2, 3q26.33, and 17q12, which harbored CCND1, EGFR, SOX2, and ERBB2, respectively. Analysis of survival data and RNAi screening data suggested that GRB7, located on 17q12, was a driver gene in ESCC. In ESCC cell lines harboring 17q12 amplification, knockdown of GRB7 reduced the proliferation, migration, and invasion capacities of cells. Moreover, siRNA targeting GRB7 had a synergistic inhibitory effect when combined with trastuzumab, an anti-ERBB2 antibody. Survival analysis of the independent cohort also showed that high GRB7 expression was associated with poor prognosis in ESCC. Conclusion Our integrative analysis provided important insights into ESCC pathogenesis. We identified GRB7 as a novel ESCC driver gene and potential new therapeutic target.


Annals of Surgical Oncology | 2014

Loss of CDCP1 expression promotes invasiveness and poor prognosis in esophageal squamous cell carcinoma.

Genta Sawada; Yusuke Takahashi; Atsushi Niida; Teppei Shimamura; Junji Kurashige; Tae Matsumura; Hiroki Ueo; Ryutaro Uchi; Yuki Takano; Masami Ueda; Hidenari Hirata; Shotaro Sakimura; Yoshiaki Shinden; Hidetoshi Eguchi; Tomoya Sudo; Keishi Sugimachi; Satoru Miyano; Yuichiro Doki; Masaki Mori; Koshi Mimori

BackgroundHuman CDCP1 gene, located on chromosome 3p21.3, is a transmembrane glycoprotein widely expressed in epithelial tissues, and its role in cancer remains to be understood.MethodsUsing microarray profiles of gene expression and copy number data from 69 esophageal squamous cell carcinoma (ESCC) samples, we performed informatics analyses to reveal the significance of CDCP1 expression. We also performed migration and invasion assays of siRNA-targeted CDCP1-transfected cells and CDCP1-overexpressing cell in vitro. Moreover, we evaluated the clinical magnitude of CDCP1 expression in esophageal squamous cell cancer cases.ResultsAllelic loss of chromosome 3p was confirmed by copy number analysis. The expression level of CDCP1 in tumor tissue was significantly lower than that in corresponding normal tissue. siRNA targeting of CDCP1 promoted the migratory and invasive abilities of esophageal cancer cell lines, whereas both abilities were reduced in CDCP1-overexpressing cells. Gene set enrichment analysis showed that expression levels of CDCP1 were associated with tumor differentiation and metastasis, consistent with the result of clinicopathologic analyses. Finally, multivariate analysis revealed that the expression level of CDCP1 was an independent prognostic factor for survival.ConclusionsLoss of CDCP1 expression may be a novel indicator for biological aggressiveness in ESCC.


PLOS ONE | 2016

miR-146a Polymorphism (rs2910164) Predicts Colorectal Cancer Patients' Susceptibility to Liver Metastasis.

Tomohiro Iguchi; Sho Nambara; Takaaki Masuda; Hisateru Komatsu; Masami Ueda; Shinya Kidogami; Yushi Ogawa; Qingjiang Hu; Kuniaki Sato; Tomoko Saito; Hidenari Hirata; Shotaro Sakimura; Ryutaro Uchi; Naoki Hayashi; Shuhei Ito; Hidetoshi Eguchi; Keishi Sugimachi; Yoshihiko Maehara; Koshi Mimori

miR-146a plays important roles in cancer as it directly targets NUMB, an inhibitor of Notch signaling. miR-146a is reportedly regulated by a G>C polymorphism (SNP; rs2910164). This polymorphism affects various cancers, including colorectal cancer (CRC). However, the clinical significance of miR-146a polymorphism in CRC remains unclear. A total of 59 patients with CRC were divided into 2 groups: a CC/CG genotype (n = 32) and a GG genotype (n = 27), based on the miR-146a polymorphism. cDNA microarray analysis was performed using 59 clinical samples. Significantly enriched gene sets in each genotype were extracted using GSEA. We also investigated the association between miR-146a polymorphism and miR-146a, NUMB expression or migratory response in CRC cell lines. The CC/CG genotype was associated with significantly more synchronous liver metastasis (p = 0.007). A heat map of the two genotypes showed that the expression profiles were clearly stratified. GSEA indicated that Notch signaling and JAK/STAT3 signaling were significantly associated with the CC/CG genotype (p = 0.004 and p = 0.023, respectively). CRC cell lines with the pre-miR-146a/C revealed significantly higher miR-146a expression (p = 0.034) and higher NUMB expression and chemotactic activity. In CRC, miR-146a polymorphism is involved in liver metastasis. Identification of this polymorphism could be useful to identify patients with a high risk of liver metastasis in CRC.


Expert Opinion on Therapeutic Targets | 2016

HMGA1 silencing reduces stemness and temozolomide resistance in glioblastoma stem cells

Marianna Colamaio; Nadia Tosti; Francesca Puca; Alessia Mari; Rosaria Gattordo; Yalçın Kuzay; Antonella Federico; Anna Pepe; Daniela Sarnataro; Elvira Ragozzino; Maddalena Raia; Hidenari Hirata; Marica Gemei; Koshi Mimori; Luigi Del Vecchio; Sabrina Battista; Alfredo Fusco

ABSTRACT Objective: Glioblastoma multiforme (GBM) develops from a small subpopulation of stem-like cells, which are endowed with the ability to self-renew, proliferate and give rise to progeny of multiple neuroepithelial lineages. These cells are resistant to conventional chemo- and radiotherapy and are hence also responsible for tumor recurrence. HMGA1 overexpression has been shown to correlate with proliferation, invasion, and angiogenesis of GBMs and to affect self-renewal of cancer stem cells from colon cancer. The role of HMGA1 in GBM tumor stem cells is not completely understood. Research design and methods: We have investigated the role of HMGA1 in brain tumor stem cell (BTSC) self-renewal, stemness and resistance to temozolomide by shRNA- mediated HMGA1 silencing. Results: We first report that HMGA1 is overexpressed in a subset of BTSC lines from human GBMs. Then, we show that HMGA1 knockdown reduces self-renewal, sphere forming efficiency and stemness, and sensitizes BTSCs to temozolomide. Interestingly, HMGA1 silencing also leads to reduced tumor initiation ability in vivo. Conclusions: These results demonstrate a pivotal role of HMGA1 in cancer stem cell gliomagenesis and endorse HMGA1 as a suitable target for CSC-specific GBM therapy.

Collaboration


Dive into the Hidenari Hirata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge