Hidetoshi Eguchi
Kyushu University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hidetoshi Eguchi.
British Journal of Cancer | 2015
Tae Matsumura; Keizo Sugimachi; Hisae Iinuma; Yusuke Takahashi; Junji Kurashige; Genta Sawada; Masami Ueda; Ryutaro Uchi; Hiroki Ueo; Yuki Takano; Yoshiaki Shinden; Hidetoshi Eguchi; Hiroshi Yamamoto; Yuichiro Doki; Masahide Mori; T Ochiya; Koshi Mimori
Background:Functional microRNAs (miRNAs) in exosomes have been recognised as potential stable biomarkers in cancers. The aim of this study is to identify specific miRNAs in exosome as serum biomarkers for the early detection of recurrence in human colorectal cancer (CRC).Methods:Serum samples were sequentially obtained from six patients with and without recurrent CRC. The miRNAs were purified from exosomes, and miRNA microarray analysis was performed. The miRNA expression profiles and copy number aberrations were explored using microarray and array CGH analyses in 124 CRC tissues. Then, we validated exosomal miRNAs in 2 serum sample sets (90 and 209 CRC patients) by quantitative real-time RT–PCR.Results:Exosomal miR-17-92a cluster expression level in serum was correlated with the recurrence of CRC. Exosomal miR-19a expression levels in serum were significantly increased in patients with CRC as compared with healthy individuals with gene amplification. The CRC patients with high exosomal miR-19a expression showed poorer prognoses than the low expression group (P<0.001).Conclusions:Abundant expression of exosomal miR-19a in serum was identified as a prognostic biomarker for recurrence in CRC patients.
British Journal of Cancer | 2015
Sugimachi K; Tae Matsumura; Hidenari Hirata; Ryutaro Uchi; Masami Ueda; Hiroki Ueo; Yoshiaki Shinden; Tomohiro Iguchi; Hidetoshi Eguchi; Ken Shirabe; T Ochiya; Y. Maehara; K. Mimori
BackgroundPredictive biomarkers for the recurrence of hepatocellular carcinoma (HCC) have great benefit in the selection of treatment options, including liver transplantation (LT), for HCC. The purpose of this study was to identify specific microRNAs (miRs) in exosomes from the serum of patients with recurrent HCC and to validate these molecules as novel biomarkers for HCC recurrence.MethodsWe employed microarray-based expression profiling of miRs derived from exosomes in the serum of HCC patients to identify a biomarker that distinguishes between patients with and without HCC recurrence after LT. This was followed by the validation in a separate cohort of 59 HCC patients who underwent living related LT. The functions and potential gene targets of the recurrence-specific miRs were analysed using a database, clinical samples and HCC cell lines.ResultsWe found that miR-718 showed significantly different expression in the serum exosomes of HCC cases with recurrence after LT compared with those without recurrence. Decreased expression of miR-718 was associated with HCC tumour aggressiveness in the validated cohort series. We identified HOXB8 as a potential target gene of miR-718, and its upregulation was associated with poor prognosis.ConclusionCirculating miRs in serum exosomes have potential as novel biomarkers for predicting HCC recurrence.
Surgical Laparoscopy Endoscopy & Percutaneous Techniques | 2009
Yuichi Endo; Masayuki Ohta; Atsushi Sasaki; Seiichiro Kai; Hidetoshi Eguchi; Kentaro Iwaki; Kohei Shibata; Seigo Kitano
Background Laparoscopic hepatectomy was initially reported in 1992. However, the reported experiences are scarce, and this operation has not been a standard procedure until now. The aims of this study were to assess our results of laparoscopy-assisted left lateral hepatectomy for hepatocellular carcinoma (HCC) and to compare them with those of open conventional procedures. Methods From 1984 to 2002, left lateral hepatectomy for HCC less than 5u2009cm in diameter was carried out in 21 patients. Ten patients received a laparoscopy-assisted procedure, and remaining 11 patients received an open procedure. Results There were no significant differences in the operation time, blood loss, resected liver weight, and resection margin between the 2 groups. The total time that analgesics were given, body temperature on postoperative day 1, weight loss on postoperative day 7, and postoperative hospital stay in the laparoscopic group were significantly better than in the conventional group. With regard to the long-term prognosis, there were no differences in patient survival or disease-free survival rates between the 2 groups. Conclusions Laparoscopy-assisted left lateral hepatectomy for HCC is superior to the conventional open surgery in terms of its short-term results and does not cause the long-term survival to deteriorate. Therefore, laparoscopic hepatectomy may be an alternative choice for treatment of HCC.
Gastroenterology | 2016
Genta Sawada; Atsushi Niida; Ryutaro Uchi; Hidenari Hirata; Teppei Shimamura; Yutaka Suzuki; Yuichi Shiraishi; Kenichi Chiba; Seiya Imoto; Yusuke Takahashi; Takeshi Iwaya; Tomoya Sudo; Tomoatsu Hayashi; Hiroki Takai; Yoshihiro Kawasaki; Takashi Matsukawa; Hidetoshi Eguchi; Keishi Sugimachi; Fumiaki Tanaka; Hiromichi Suzuki; Ken Yamamoto; Hideshi Ishii; Makiko Shimizu; Hiroshi Yamazaki; Makoto Yamazaki; Yuji Tachimori; Yoshiaki Kajiyama; Shoji Natsugoe; Hiromasa Fujita; Ken-ichi Mafune
BACKGROUND & AIMSnEsophageal squamous cell carcinoma (ESCC) is the predominant form of esophageal cancer in Japan. Smoking and drinking alcohol are environmental risk factors for ESCC, whereas single nucleotide polymorphisms in ADH1B and ALDH2, which increase harmful intermediates produced by drinking alcohol, are genetic risk factors. We conducted a large-scale genomic analysis of ESCCs from patients in Japan to determine the mutational landscape of this cancer.nnnMETHODSnWe performed whole-exome sequence analysis of tumor and nontumor esophageal tissues collected from 144 patients with ESCC who underwent surgery at 5 hospitals in Japan. We also performed single-nucleotide polymorphism array-based copy number profile and germline genotype analyses of polymorphisms in ADH1B and ALDH2. Polymorphisms in CYP2A6, which increase harmful effects of smoking, were analyzed. Functions of TET2 mutants were evaluated in KYSE410 and HEK293FT cells.nnnRESULTSnA high proportion of mutations in the 144 tumor samples were C to T substitution in CpG dinucleotides (called the CpG signature) and C to G/T substitutions with a flanking 5 thymine (called the APOBEC signature). Based on mutational signatures, patients were assigned to 3 groups, which associated with environmental (drinking and smoking) and genetic (polymorphisms in ALDH2 and CYP2A6) factors. Many tumors contained mutations in genes that regulate the cell cycle (TP53, CCND1, CDKN2A, FBXW7); epigenetic processes (MLL2, EP300, CREBBP, TET2); and the NOTCH (NOTCH1, NOTCH3), WNTxa0(FAT1, YAP1, AJUBA) and receptor-tyrosine kinase-phosphoinositide 3-kinase signaling pathways (PIK3CA, EGFR, ERBB2). Mutations in EP300 and TET2 correlated with shorter survival times, and mutations in ZNF750 associated with an increased number ofxa0mutations of the APOBEC signature. Expression of mutant forms of TET2 did not increase cellular levels of 5-hydroxymethylcytosine in HEK293FT cells, whereas knockdown of TET2 increased the invasive activity of KYSE410 ESCC cells. Computational analyses associated the mutations in NFE2L2 we identified with transcriptional activation of its target genes.nnnCONCLUSIONSnWe associated environmental and genetic factors with base substitution patterns of somatic mutations and provide a registry of genes and pathways that are disrupted in ESCCs. These findings might be used to design specific treatments for patients with esophageal squamous cancers.
Carcinogenesis | 2015
Junji Kurashige; Kosuke Mima; Genta Sawada; Yusuke Takahashi; Hidetoshi Eguchi; Keishi Sugimachi; Masaki Mori; Kazuyoshi Yanagihara; Masakazu Yashiro; Kosei Hirakawa; Hideo Baba; Koshi Mimori
Cancer-associated fibroblasts (CAFs) have recently been linked to the invasion and metastasis of gastric cancer. In addition, the microRNA (miR)-200 family plays a central role in the regulation of the epithelial-mesenchymal transition process during cancer metastasis, and aberrant DNA methylation is one of the key mechanisms underlying regulation of the miR-200 family. In this study, we clarified whether epigenetic changes of miR-200b by CAFs stimulate cancer invasion and peritoneal dissemination in gastric cancer. We evaluated the relationship between miR-200b and CAFs using a coculture model. In addition, we established a peritoneal metastasis mouse model and investigated the expression and methylation status of miR-200b. We also investigated the expression and methylation status of miR-200b and CAFs expression in primary gastric cancer samples. CAFs (CAF-37 and CAF-50) contributed to epigenetic changes of miR-200b, reduced miR-200b expression and promoted tumor invasion and migration in NUGC3 and OCUM-2M cells in coculture. In the model mice, epigenetic changes of miR-200b were observed in the inoculated high-frequency peritoneal dissemination cells. In the 173 gastric cancer samples, the low miR-200b expression group demonstrated a significantly poorer prognosis compared with the high miR-200b expression group and was associated with peritoneal metastasis. In addition, downregulation of miR-200b in cancer cells was significantly correlated with alpha-smooth muscle actin expression. Our data provide evidence that CAFs reduce miR-200b expression and promote tumor invasion through epigenetic changes of miR-200b in gastric cancer. Thus, CAFs might be a therapeutic target for inhibition of gastric cancer.
Annals of Surgical Oncology | 2015
Tomoko Saito; Junji Kurashige; Sho Nambara; Hisateru Komatsu; Hidenari Hirata; Masami Ueda; Shotaro Sakimura; Ryutaro Uchi; Yuki Takano; Yoshiaki Shinden; Tomohiro Iguchi; Hidetoshi Eguchi; Shogo Ehata; Kazunari Murakami; Keishi Sugimachi; Koshi Mimori
BackgroundA recent study reported that long non-coding RNA activated by TGF-β (lncRNA-ATB) induced epithelial–mesenchymal transition (EMT) through the transforming growth factor-β (TGF-β)/miR-200s/ZEB axis in hepatocellular carcinoma. Herein, we focused on the clinical significance of lncRNA-ATB in gastric cancer (GC) patients.Materials and MethodsQuantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was performed to examine expression of lncRNA-ATB, miR-200b, and miR-200c in GC tissues (nxa0=xa0183). Patients were divided into high and low lncRNA-ATB expression groups using a cutoff of lncRNA-ATB/GAPDH ≥0.60 or <0.60 to determine the clinicopathological significance of lncRNA-ATB in GC. Moreover, we evaluated the expression of TGF-β, lncRNA-ATB, miR-200s, and ZEB1 in GC cell lines by qRT-PCR. GC cell lines were treated by recombinant TGF-β1 or TGF-β receptor inhibitor to examine morphologic changes and genetic alterations, such as lncRNA-ATB, miR-200s, and ZEB1 levels, with respect to the EMT phenotype.ResultsThe high lncRNA-ATB group experienced a lower overall survival rate compared with the low lncRNA-ATB group, and multivariate analysis indicated that lncRNA-ATB was an independent prognostic factor (hazard ratio 3.50; 95xa0% CI 1.73–7.44; pxa0=xa00.0004). miR-200c levels were lower and ZEB1 levels were higher in the high lncRNA-ATB group than in the low lncRNA-ATB group. Treatment with TGF-β in GC cell lines resulted in morphological EMT changes, upregulation of lncRNA-ATB and ZEB1, and downregulation of miR-200c and CDH1. SB431542 reduced lncRNA-ATB expression.ConclusionLncRNA-ATB plays an important role in EMT to promote invasion and metastasis through the TGF-β/miR-200s/ZEB axis, resulting in a poor prognosis in GC. LncRNA-ATB is a novel biomarker of lncRNA, indicative of a poor prognosis in GC patients.
PLOS Genetics | 2016
Ryutaro Uchi; Yusuke Takahashi; Atsushi Niida; Teppei Shimamura; Hidenari Hirata; Keishi Sugimachi; Genta Sawada; Takeshi Iwaya; Junji Kurashige; Yoshiaki Shinden; Tomohiro Iguchi; Hidetoshi Eguchi; Kenichi Chiba; Yuichi Shiraishi; Genta Nagae; Kenichi Yoshida; Yasunobu Nagata; Hiroshi Haeno; Hirofumi Yamamoto; Hideshi Ishii; Yuichiro Doki; Hisae Iinuma; Shin Sasaki; Satoshi Nagayama; Kazutaka Yamada; Shinichi Yachida; Mamoru Kato; Tatsuhiro Shibata; Eiji Oki; Hiroshi Saeki
Understanding intratumor heterogeneity is clinically important because it could cause therapeutic failure by fostering evolutionary adaptation. To this end, we profiled the genome and epigenome in multiple regions within each of nine colorectal tumors. Extensive intertumor heterogeneity is observed, from which we inferred the evolutionary history of the tumors. First, clonally shared alterations appeared, in which C>T transitions at CpG site and CpG island hypermethylation were relatively enriched. Correlation between mutation counts and patients’ ages suggests that the early-acquired alterations resulted from aging. In the late phase, a parental clone was branched into numerous subclones. Known driver alterations were observed frequently in the early-acquired alterations, but rarely in the late-acquired alterations. Consistently, our computational simulation of the branching evolution suggests that extensive intratumor heterogeneity could be generated by neutral evolution. Collectively, we propose a new model of colorectal cancer evolution, which is useful for understanding and confronting this heterogeneous disease.
Annals of Surgical Oncology | 2014
Yusuke Takahashi; Takeshi Iwaya; Genta Sawada; Junji Kurashige; Tae Matsumura; Ryutaro Uchi; Hiroki Ueo; Yuki Takano; Hidetoshi Eguchi; Tomoya Sudo; Keishi Sugimachi; Hirofumi Yamamoto; Yuichiro Doki; Masaki Mori; Koshi Mimori
BackgroundNIMA-related kinase 2 (NEK2), an enzyme involved in the development and progression of cancer, is abnormally expressed in a wide variety of human cancers, including colorectal cancer (CRC), and is known to have roles in cell division and mitotic regulation through centrosome splitting. We investigated the clinical significance of NEK2 in CRC. In particular, we examined miR-128 expression, which is thought to target NEK2.MethodsWe measured NEK2 mRNA and miR-128 levels in clinical samples by quantitative reverse transcription real-time PCR and analyzed the associations between NEK2 levels, miR-128 levels, clinicopathological factors, and prognoses. Furthermore, we performed in vitro assays using a pre-miR-128 precursor and conducted miR-128 methylation analyses.ResultsMiR-128 inhibited NEK2 expression and cancer cell proliferation via cell cycle arrest. Moreover, miR-128 was silenced by DNA methylation. Increased NEK2 expression was associated with serosal invasion, lymphatic invasion, and peritoneal dissemination. Patients with high NEK2 expression also had significantly poorer prognoses. Multivariate analysis indicated that high NEK2 expression was an independent prognostic factor for survival. Patients with high miR-128 expression had significantly lower NEK2 expression and lower recurrence rates than those with low miR-128 expression.ConclusionsNEK2 may be an independent prognostic factor for CRC and was regulated by miR-128, a microRNA that was subjected to epigenetic regulation. Thus, this miR-128/NEK2 pathway may be a prospective therapeutic target for patients with CRC.
Molecular Oncology | 2016
Takaaki Masuda; Naoki Hayashi; Tomohiro Iguchi; Shuhei Ito; Hidetoshi Eguchi; Koshi Mimori
During the process of metastasis, which is the leading cause of cancer‐related death, cancer cells dissociate from primary tumors, migrate to distal sites, and finally colonize, eventually leading to the formation of metastatic tumors. The migrating tumor cells in circulation, e.g., those found in peripheral blood (PB) or bone marrow (BM), are called circulating tumor cells (CTCs). CTCs in the BM are generally called disseminated tumor cells (DTCs). Many studies have reported the detection and characterization of CTCs to facilitate early diagnosis of relapse or metastasis and improve early detection and appropriate treatment decisions. Initially, epithelial markers, such as EpCAM and cytokeratins (CKs), identified using immunocytochemistry or reverse transcription polymerase chain reaction (RT‐PCR) were used to identify CTCs in PB or BM. Recently, however, other markers such as human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), and immuno‐checkpoint genes also have been examined to facilitate detection of CTCs with metastatic potential. Moreover, the epithelial‐to‐mesenchymal transition (EMT) and cancer stem cells (CSCs) have also received increasing attention as important CTC markers owing to their roles in the biological progression of metastasis. In addition to these markers, researchers have attempted to develop detection or capture techniques for CTCs. Notably, however, the establishment of metastasis requires cancer‐host interactions. Markers from host cells, such as macrophages, mesenchymal stem cells, and bone marrow‐derived cells, which constitute the premetastatic niche, may become novel biomarkers for predicting relapse or metastasis or monitoring the effects of treatment. Biological studies of CTCs are still emerging. However, recent technical innovations, such as next‐generation sequencing, are being used more commonly and could help to clarify the mechanism of metastasis. Additionally, biological findings are gradually being accumulated, adding to our body of knowledge on CTCs. In this review, we will summarize recent approaches to detect or capture CTCs. Moreover, we will introduce recent studies of the clinical and biological importance of CTCs and host cells.
Cancer Research | 2016
Hidenari Hirata; Keishi Sugimachi; Hisateru Komatsu; Masami Ueda; Takaaki Masuda; Ryutaro Uchi; Shotaro Sakimura; Sho Nambara; Tomoko Saito; Yoshiaki Shinden; Tomohiro Iguchi; Hidetoshi Eguchi; Shuhei Ito; Kotaro Terashima; Katsumi Sakamoto; Masakazu Hirakawa; Hiroshi Honda; Koshi Mimori
Fructose-1,6-bisphosphatase (FBP1), the rate-limiting enzyme in gluconeogenesis, is reduced in expression in certain cancers where it has been hypothesized to act as a tumor suppressor, including in hepatocellular carcinoma (HCC). Here, we report functional evidence supporting this hypothesis, providing a preclinical rationale to develop FBP1 as a therapeutic target for HCC treatment. Three independent cohorts totaling 594 cases of HCC were analyzed to address clinical significance. Lower FBP1 expression associated with advanced tumor stage, poor overall survival, and higher tumor recurrence rates. In HCC cell lines, where endogenous FBP1 expression is low, engineering its ectopic overexpression inhibited tumor growth and intracellular glucose uptake by reducing aerobic glycolysis. In patient specimens, promoter methylation and copy-number loss of FBP1 were independently associated with decreased FBP1 expression. Similarly, FBP1 downregulation in HCC cell lines was also associated with copy-number loss. HCC specimens exhibiting low expression of FBP1 had a highly malignant phenotype, including large tumor size, poor differentiation, impaired gluconeogenesis, and enhanced aerobic glycolysis. The effects of FBP1 expression on prognosis and glucose metabolism were confirmed by gene set enrichment analysis. Overall, our findings established that FBP1 downregulation in HCC contributed to tumor progression and poor prognosis by altering glucose metabolism, and they rationalize further study of FBP1 as a prognostic biomarker and therapeutic target in HCC patients. Cancer Res; 76(11); 3265-76. ©2016 AACR.