Hideya Kawaji
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hideya Kawaji.
Nature Genetics | 2006
Piero Carninci; Albin Sandelin; Boris Lenhard; Shintaro Katayama; Kazuro Shimokawa; Jasmina Ponjavic; Colin A. Semple; Martin S. Taylor; Pär G. Engström; Martin C. Frith; Alistair R. R. Forrest; Wynand B.L. Alkema; Sin Lam Tan; Charles Plessy; Rimantas Kodzius; Timothy Ravasi; Takeya Kasukawa; Shiro Fukuda; Mutsumi Kanamori-Katayama; Yayoi Kitazume; Hideya Kawaji; Chikatoshi Kai; Mari Nakamura; Hideaki Konno; Kenji Nakano; Salim Mottagui-Tabar; Peter Arner; Alessandra Chesi; Stefano Gustincich; Francesca Persichetti
Mammalian promoters can be separated into two classes, conserved TATA box–enriched promoters, which initiate at a well-defined site, and more plastic, broad and evolvable CpG-rich promoters. We have sequenced tags corresponding to several hundred thousand transcription start sites (TSSs) in the mouse and human genomes, allowing precise analysis of the sequence architecture and evolution of distinct promoter classes. Different tissues and families of genes differentially use distinct types of promoters. Our tagging methods allow quantitative analysis of promoter usage in different tissues and show that differentially regulated alternative TSSs are a common feature in protein-coding genes and commonly generate alternative N termini. Among the TSSs, we identified new start sites associated with the majority of exons and with 3′ UTRs. These data permit genome-scale identification of tissue-specific promoters and analysis of the cis-acting elements associated with them.
Nature | 2014
Robin Andersson; Claudia Gebhard; Irene Miguel-Escalada; Ilka Hoof; Jette Bornholdt; Mette Boyd; Yun Chen; Xiaobei Zhao; Christian Schmidl; Takahiro Suzuki; Evgenia Ntini; Erik Arner; Eivind Valen; Kang Li; Lucia Schwarzfischer; Dagmar Glatz; Johanna Raithel; Berit Lilje; Nicolas Rapin; Frederik Otzen Bagger; Mette Jørgensen; Peter Refsing Andersen; Nicolas Bertin; Owen J. L. Rackham; A. Maxwell Burroughs; J. Kenneth Baillie; Yuri Ishizu; Yuri Shimizu; Erina Furuhata; Shiori Maeda
Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.
Nature | 2001
Jun Kawai; Akira Shinagawa; Kazuhiro Shibata; Masataka Yoshino; Masayoshi Itoh; Yoshiyuki Ishii; Takahiro Arakawa; Ayako Hara; Yoshifumi Fukunishi; Hideaki Konno; Jun Adachi; Shiro Fukuda; Katsunori Aizawa; Masaki Izawa; Kenichiro Nishi; Hidenori Kiyosawa; Shinji Kondo; Itaru Yamanaka; Tsuyoshi Saito; Yasushi Okazaki; Takashi Gojobori; Hidemasa Bono; Takeya Kasukawa; R. Saito; Koji Kadota; Hideo Matsuda; Michael Ashburner; Serge Batalov; Tom L. Casavant; W. Fleischmann
The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.
Nature Biotechnology | 2009
Nicolas Le Novère; Michael Hucka; Huaiyu Mi; Stuart L. Moodie; Falk Schreiber; Anatoly A. Sorokin; Emek Demir; Katja Wegner; Mirit I. Aladjem; Sarala M. Wimalaratne; Frank T. Bergman; Ralph Gauges; Peter Ghazal; Hideya Kawaji; Lu Li; Yukiko Matsuoka; Alice Villéger; Sarah E. Boyd; Laurence Calzone; Mélanie Courtot; Ugur Dogrusoz; Tom C. Freeman; Akira Funahashi; Samik Ghosh; Akiya Jouraku; Sohyoung Kim; Fedor A. Kolpakov; Augustin Luna; Sven Sahle; Esther Schmidt
Circuit diagrams and Unified Modeling Language diagrams are just two examples of standard visual languages that help accelerate work by promoting regularity, removing ambiguity and enabling software tool support for communication of complex information. Ironically, despite having one of the highest ratios of graphical to textual information, biology still lacks standard graphical notations. The recent deluge of biological knowledge makes addressing this deficit a pressing concern. Toward this goal, we present the Systems Biology Graphical Notation (SBGN), a visual language developed by a community of biochemists, modelers and computer scientists. SBGN consists of three complementary languages: process diagram, entity relationship diagram and activity flow diagram. Together they enable scientists to represent networks of biochemical interactions in a standard, unambiguous way. We believe that SBGN will foster efficient and accurate representation, visualization, storage, exchange and reuse of information on all kinds of biological knowledge, from gene regulation, to metabolism, to cellular signaling.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Toshiyuki Shiraki; Shinji Kondo; Shintaro Katayama; Kazunori Waki; Takeya Kasukawa; Hideya Kawaji; Rimantas Kodzius; Akira Watahiki; Mari Nakamura; Takahiro Arakawa; Shiro Fukuda; Daisuke Sasaki; Anna Podhajska; Matthias Harbers; Jun Kawai; Piero Carninci; Yoshihide Hayashizaki
We introduce cap analysis gene expression (CAGE), which is based on preparation and sequencing of concatamers of DNA tags deriving from the initial 20 nucleotides from 5′ end mRNAs. CAGE allows high-throughout gene expression analysis and the profiling of transcriptional start points (TSP), including promoter usage analysis. By analyzing four libraries (brain, cortex, hippocampus, and cerebellum), we redefined more accurately the TSPs of 11-27% of the analyzed transcriptional units that were hit. The frequency of CAGE tags correlates well with results from other analyses, such as serial analysis of gene expression, and furthermore maps the TSPs more accurately, including in tissue-specific cases. The high-throughput nature of this technology paves the way for understanding gene networks via correlation of promoter usage and gene transcriptional factor expression.
BMC Genomics | 2008
Hideya Kawaji; Mari Nakamura; Yukari Takahashi; Albin Sandelin; Shintaro Katayama; Shiro Fukuda; Carsten O. Daub; Chikatoshi Kai; Jun Kawai; Jun Yasuda; Piero Carninci; Yoshihide Hayashizaki
BackgroundSmall RNA attracts increasing interest based on the discovery of RNA silencing and the rapid progress of our understanding of these phenomena. Although recent studies suggest the possible existence of yet undiscovered types of small RNAs in higher organisms, many studies to profile small RNA have focused on miRNA and/or siRNA rather than on the exploration of additional classes of RNAs.ResultsHere, we explored human small RNAs by unbiased sequencing of RNAs with sizes of 19–40 nt. We provide substantial evidences for the existence of independent classes of small RNAs. Our data shows that well-characterized non-coding RNA, such as tRNA, snoRNA, and snRNA are cleaved at sites specific to the class of ncRNA. In particular, tRNA cleavage is regulated depending on tRNA type and tissue expression. We also found small RNAs mapped to genomic regions that are transcribed in both directions by bidirectional promoters, indicating that the small RNAs are a product of dsRNA formation and their subsequent cleavage. Their partial similarity with ribosomal RNAs (rRNAs) suggests unrevealed functions of ribosomal DNA or interstitial rRNA. Further examination revealed six novel miRNAs.ConclusionOur results underscore the complexity of the small RNA world and the biogenesis of small RNAs.
Genome Biology | 2015
Marina Lizio; Jayson Harshbarger; Hisashi Shimoji; Jessica Severin; Takeya Kasukawa; Serkan Sahin; Imad Abugessaisa; Shiro Fukuda; Fumi Hori; Sachi Ishikawa-Kato; Christopher J. Mungall; Erik Arner; J. Kenneth Baillie; Nicolas Bertin; Hidemasa Bono; Michiel Jl de Hoon; Alexander D. Diehl; Emmanuel Dimont; Tom C. Freeman; Kaori Fujieda; Winston Hide; Rajaram Kaliyaperumal; Toshiaki Katayama; Timo Lassmann; Terrence F. Meehan; Koro Nishikata; Hiromasa Ono; Michael Rehli; Albin Sandelin; Erik Schultes
The FANTOM5 project investigates transcription initiation activities in more than 1,000 human and mouse primary cells, cell lines and tissues using CAGE. Based on manual curation of sample information and development of an ontology for sample classification, we assemble the resulting data into a centralized data resource (http://fantom.gsc.riken.jp/5/). This resource contains web-based tools and data-access points for the research community to search and extract data related to samples, genes, promoter activities, transcription factors and enhancers across the FANTOM5 atlas.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Kate Schroder; Katharine M. Irvine; Martin S. Taylor; Nilesh J. Bokil; Kim-Anh Lê Cao; Kelly-Anne Masterman; Larisa I. Labzin; Colin A. Semple; Ronan Kapetanovic; Lynsey Fairbairn; Altuna Akalin; Geoffrey J. Faulkner; John Kenneth Baillie; Milena Gongora; Carsten O. Daub; Hideya Kawaji; Geoffrey J. McLachlan; Nick Goldman; Sean M. Grimmond; Piero Carninci; Harukazu Suzuki; Yoshihide Hayashizaki; Boris Lenhard; David A. Hume; Matthew J. Sweet
Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like receptor (TLR)–4 agonist lipopolysaccharide (LPS). By using a custom platform permitting cross-species interrogation coupled with deep sequencing of mRNA 5′ ends, we identified extensive divergence in LPS-regulated orthologous gene expression between humans and mice (24% of orthologues were identified as “divergently regulated”). We further demonstrate concordant regulation of human-specific LPS target genes in primary pig macrophages. Divergently regulated orthologues were enriched for genes encoding cellular “inputs” such as cell surface receptors (e.g., TLR6, IL-7Rα) and functional “outputs” such as inflammatory cytokines/chemokines (e.g., CCL20, CXCL13). Conversely, intracellular signaling components linking inputs to outputs were typically concordantly regulated. Functional consequences of divergent gene regulation were confirmed by showing LPS pretreatment boosts subsequent TLR6 responses in mouse but not human macrophages, in keeping with mouse-specific TLR6 induction. Divergently regulated genes were associated with a large dynamic range of gene expression, and specific promoter architectural features (TATA box enrichment, CpG island depletion). Surprisingly, regulatory divergence was also associated with enhanced interspecies promoter conservation. Thus, the genes controlled by complex, highly conserved promoters that facilitate dynamic regulation are also the most susceptible to evolutionary change.
Nature | 2017
Chung Chau Hon; Jordan A. Ramilowski; Jayson Harshbarger; Nicolas Bertin; Owen J. L. Rackham; Julian Gough; Elena Denisenko; Sebastian Schmeier; Thomas M. Poulsen; Jessica Severin; Marina Lizio; Hideya Kawaji; Takeya Kasukawa; Masayoshi Itoh; A. Maxwell Burroughs; Shohei Noma; Sarah Djebali; Tanvir Alam; Yulia A. Medvedeva; Alison C. Testa; Leonard Lipovich; Chi Wai Yip; Imad Abugessaisa; Mickal Mendez; Akira Hasegawa; Dave Tang; Timo Lassmann; Peter Heutink; Magda Babina; Christine A. Wells
Long non-coding RNAs (lncRNAs) are largely heterogeneous and functionally uncharacterized. Here, using FANTOM5 cap analysis of gene expression (CAGE) data, we integrate multiple transcript collections to generate a comprehensive atlas of 27,919 human lncRNA genes with high-confidence 5′ ends and expression profiles across 1,829 samples from the major human primary cell types and tissues. Genomic and epigenomic classification of these lncRNAs reveals that most intergenic lncRNAs originate from enhancers rather than from promoters. Incorporating genetic and expression data, we show that lncRNAs overlapping trait-associated single nucleotide polymorphisms are specifically expressed in cell types relevant to the traits, implicating these lncRNAs in multiple diseases. We further demonstrate that lncRNAs overlapping expression quantitative trait loci (eQTL)-associated single nucleotide polymorphisms of messenger RNAs are co-expressed with the corresponding messenger RNAs, suggesting their potential roles in transcriptional regulation. Combining these findings with conservation data, we identify 19,175 potentially functional lncRNAs in the human genome.
BMC Genomics | 2014
Yulia A. Medvedeva; Abdullah M. Khamis; Ivan V. Kulakovskiy; Wail Ba-alawi; Shariful Islam Bhuyan; Hideya Kawaji; Timo Lassmann; Matthias Harbers; Alistair R. R. Forrest; Vladimir B. Bajic
BackgroundDNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important.ResultsWe found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines “traffic lights”. We observed a strong selection against CpG “traffic lights” within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions.ConclusionsOur results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription.