Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeya Kasukawa is active.

Publication


Featured researches published by Takeya Kasukawa.


Nature Genetics | 2006

Genome-wide analysis of mammalian promoter architecture and evolution

Piero Carninci; Albin Sandelin; Boris Lenhard; Shintaro Katayama; Kazuro Shimokawa; Jasmina Ponjavic; Colin A. Semple; Martin S. Taylor; Pär G. Engström; Martin C. Frith; Alistair R. R. Forrest; Wynand B.L. Alkema; Sin Lam Tan; Charles Plessy; Rimantas Kodzius; Timothy Ravasi; Takeya Kasukawa; Shiro Fukuda; Mutsumi Kanamori-Katayama; Yayoi Kitazume; Hideya Kawaji; Chikatoshi Kai; Mari Nakamura; Hideaki Konno; Kenji Nakano; Salim Mottagui-Tabar; Peter Arner; Alessandra Chesi; Stefano Gustincich; Francesca Persichetti

Mammalian promoters can be separated into two classes, conserved TATA box–enriched promoters, which initiate at a well-defined site, and more plastic, broad and evolvable CpG-rich promoters. We have sequenced tags corresponding to several hundred thousand transcription start sites (TSSs) in the mouse and human genomes, allowing precise analysis of the sequence architecture and evolution of distinct promoter classes. Different tissues and families of genes differentially use distinct types of promoters. Our tagging methods allow quantitative analysis of promoter usage in different tissues and show that differentially regulated alternative TSSs are a common feature in protein-coding genes and commonly generate alternative N termini. Among the TSSs, we identified new start sites associated with the majority of exons and with 3′ UTRs. These data permit genome-scale identification of tissue-specific promoters and analysis of the cis-acting elements associated with them.


Nature | 2001

Functional annotation of a full-length mouse cDNA collection

Jun Kawai; Akira Shinagawa; Kazuhiro Shibata; Masataka Yoshino; Masayoshi Itoh; Yoshiyuki Ishii; Takahiro Arakawa; Ayako Hara; Yoshifumi Fukunishi; Hideaki Konno; Jun Adachi; Shiro Fukuda; Katsunori Aizawa; Masaki Izawa; Kenichiro Nishi; Hidenori Kiyosawa; Shinji Kondo; Itaru Yamanaka; Tsuyoshi Saito; Yasushi Okazaki; Takashi Gojobori; Hidemasa Bono; Takeya Kasukawa; R. Saito; Koji Kadota; Hideo Matsuda; Michael Ashburner; Serge Batalov; Tom L. Casavant; W. Fleischmann

The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage

Toshiyuki Shiraki; Shinji Kondo; Shintaro Katayama; Kazunori Waki; Takeya Kasukawa; Hideya Kawaji; Rimantas Kodzius; Akira Watahiki; Mari Nakamura; Takahiro Arakawa; Shiro Fukuda; Daisuke Sasaki; Anna Podhajska; Matthias Harbers; Jun Kawai; Piero Carninci; Yoshihide Hayashizaki

We introduce cap analysis gene expression (CAGE), which is based on preparation and sequencing of concatamers of DNA tags deriving from the initial 20 nucleotides from 5′ end mRNAs. CAGE allows high-throughout gene expression analysis and the profiling of transcriptional start points (TSP), including promoter usage analysis. By analyzing four libraries (brain, cortex, hippocampus, and cerebellum), we redefined more accurately the TSPs of 11-27% of the analyzed transcriptional units that were hit. The frequency of CAGE tags correlates well with results from other analyses, such as serial analysis of gene expression, and furthermore maps the TSPs more accurately, including in tissue-specific cases. The high-throughput nature of this technology paves the way for understanding gene networks via correlation of promoter usage and gene transcriptional factor expression.


Nature | 2008

Thyrotrophin in the pars tuberalis triggers photoperiodic response

Nobuhiro Nakao; Hiroko Ono; Takashi Yamamura; Tsubasa Anraku; Tsuyoshi Takagi; Kumiko Higashi; Shinobu Yasuo; Yasuhiro Katou; Saburo Kageyama; Yumiko Uno; Takeya Kasukawa; Masayuki Iigo; Peter J. Sharp; Atsushi Iwasawa; Yutaka Suzuki; Sumio Sugano; Teruyuki Niimi; Makoto Mizutani; Takao Namikawa; Shizufumi Ebihara; Hiroki R. Ueda; Takashi Yoshimura

Molecular mechanisms regulating animal seasonal breeding in response to changing photoperiod are not well understood. Rapid induction of gene expression of thyroid-hormone-activating enzyme (type 2 deiodinase, DIO2) in the mediobasal hypothalamus (MBH) of the Japanese quail (Coturnix japonica) is the earliest event yet recorded in the photoperiodic signal transduction pathway. Here we show cascades of gene expression in the quail MBH associated with the initiation of photoinduced secretion of luteinizing hormone. We identified two waves of gene expression. The first was initiated about 14 h after dawn of the first long day and included increased thyrotrophin (TSH) β-subunit expression in the pars tuberalis; the second occurred approximately 4 h later and included increased expression of DIO2. Intracerebroventricular (ICV) administration of TSH to short-day quail stimulated gonadal growth and expression of DIO2 which was shown to be mediated through a TSH receptor–cyclic AMP (cAMP) signalling pathway. Increased TSH in the pars tuberalis therefore seems to trigger long-day photoinduced seasonal breeding.


Genome Biology | 2015

Gateways to the FANTOM5 promoter level mammalian expression atlas

Marina Lizio; Jayson Harshbarger; Hisashi Shimoji; Jessica Severin; Takeya Kasukawa; Serkan Sahin; Imad Abugessaisa; Shiro Fukuda; Fumi Hori; Sachi Ishikawa-Kato; Christopher J. Mungall; Erik Arner; J. Kenneth Baillie; Nicolas Bertin; Hidemasa Bono; Michiel Jl de Hoon; Alexander D. Diehl; Emmanuel Dimont; Tom C. Freeman; Kaori Fujieda; Winston Hide; Rajaram Kaliyaperumal; Toshiaki Katayama; Timo Lassmann; Terrence F. Meehan; Koro Nishikata; Hiromasa Ono; Michael Rehli; Albin Sandelin; Erik Schultes

The FANTOM5 project investigates transcription initiation activities in more than 1,000 human and mouse primary cells, cell lines and tissues using CAGE. Based on manual curation of sample information and development of an ontology for sample classification, we assemble the resulting data into a centralized data resource (http://fantom.gsc.riken.jp/5/). This resource contains web-based tools and data-access points for the research community to search and extract data related to samples, genes, promoter activities, transcription factors and enhancers across the FANTOM5 atlas.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Measurement of internal body time by blood metabolomics

Yoichi Minami; Takeya Kasukawa; Yuji Kakazu; Masayuki Iigo; Masahiro Sugimoto; Satsuki Ikeda; Akira Yasui; Gijsbertus T. J. van der Horst; Tomoyoshi Soga; Hiroki R. Ueda

Detection of internal body time (BT) via a few-time-point assay has been a longstanding challenge in medicine, because BT information can be exploited to maximize potency and minimize toxicity during drug administration and thus will enable highly optimized medication. To address this challenge, we previously developed the concept, “molecular-timetable method,” which was originally inspired by Linnés flower clock. In Linnés flower clock, one can estimate the time of the day by watching the opening and closing pattern of various flowers. Similarly, in the molecular-timetable method, one can measure the BT of the day by profiling the up and down patterns of substances in the molecular timetable. To make this method clinically feasible, we now performed blood metabolome analysis and here report the successful quantification of hundreds of clock-controlled metabolites in mouse plasma. Based on circadian blood metabolomics, we can detect individual BT under various conditions, demonstrating its robustness against genetic background, sex, age, and feeding differences. The power of this method is also demonstrated by the sensitive and accurate detection of circadian rhythm disorder in jet-lagged mice. These results suggest the potential for metabolomics-based detection of BT (“metabolite-timetable method”), which will lead to the realization of chronotherapy and personalized medicine.


PLOS Genetics | 2006

Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs.

Norihiro Maeda; Takeya Kasukawa; Rieko Oyama; Julian Gough; Martin C. Frith; Pär G. Engström; Boris Lenhard; Rajith N. Aturaliya; Serge Batalov; Kirk W. Beisel; Colin F. Fletcher; Alistair R. R. Forrest; Masaaki Furuno; David E. Hill; Masayoshi Itoh; Mutsumi Kanamori-Katayama; Shintaro Katayama; Masaru Katoh; Tsugumi Kawashima; John Quackenbush; Timothy Ravasi; Brian Z. Ring; Kazuhiro Shibata; Koji Sugiura; Yoichi Takenaka; Rohan D. Teasdale; Christine A. Wells; Yunxia Zhu; Chikatoshi Kai; Jun Kawai

The international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM2, comprised 60,770 full-length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein-coding genes, indicating that a number of cDNAs still remained to be collected and identified. To pursue the complete gene catalog that covers all predicted mouse genes, cloning and sequencing of full-length enriched cDNAs has been continued since FANTOM2. In FANTOM3, 42,031 newly isolated cDNAs were subjected to functional annotation, and the annotation of 4,347 FANTOM2 cDNAs was updated. To accomplish accurate functional annotation, we improved our automated annotation pipeline by introducing new coding sequence prediction programs and developed a Web-based annotation interface for simplifying the annotation procedures to reduce manual annotation errors. Automated coding sequence and function prediction was followed with manual curation and review by expert curators. A total of 102,801 full-length enriched mouse cDNAs were annotated. Out of 102,801 transcripts, 56,722 were functionally annotated as protein coding (including partial or truncated transcripts), providing to our knowledge the greatest current coverage of the mouse proteome by full-length cDNAs. The total number of distinct non-protein-coding transcripts increased to 34,030. The FANTOM3 annotation system, consisting of automated computational prediction, manual curation, and final expert curation, facilitated the comprehensive characterization of the mouse transcriptome, and could be applied to the transcriptomes of other species.


Nature | 2017

An atlas of human long non-coding RNAs with accurate 5′ ends

Chung Chau Hon; Jordan A. Ramilowski; Jayson Harshbarger; Nicolas Bertin; Owen J. L. Rackham; Julian Gough; Elena Denisenko; Sebastian Schmeier; Thomas M. Poulsen; Jessica Severin; Marina Lizio; Hideya Kawaji; Takeya Kasukawa; Masayoshi Itoh; A. Maxwell Burroughs; Shohei Noma; Sarah Djebali; Tanvir Alam; Yulia A. Medvedeva; Alison C. Testa; Leonard Lipovich; Chi Wai Yip; Imad Abugessaisa; Mickal Mendez; Akira Hasegawa; Dave Tang; Timo Lassmann; Peter Heutink; Magda Babina; Christine A. Wells

Long non-coding RNAs (lncRNAs) are largely heterogeneous and functionally uncharacterized. Here, using FANTOM5 cap analysis of gene expression (CAGE) data, we integrate multiple transcript collections to generate a comprehensive atlas of 27,919 human lncRNA genes with high-confidence 5′ ends and expression profiles across 1,829 samples from the major human primary cell types and tissues. Genomic and epigenomic classification of these lncRNAs reveals that most intergenic lncRNAs originate from enhancers rather than from promoters. Incorporating genetic and expression data, we show that lncRNAs overlapping trait-associated single nucleotide polymorphisms are specifically expressed in cell types relevant to the traits, implicating these lncRNAs in multiple diseases. We further demonstrate that lncRNAs overlapping expression quantitative trait loci (eQTL)-associated single nucleotide polymorphisms of messenger RNAs are co-expressed with the corresponding messenger RNAs, suggesting their potential roles in transcriptional regulation. Combining these findings with conservation data, we identify 19,175 potentially functional lncRNAs in the human genome.


Development | 2008

Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis

Ayano Kawaguchi; Tomoko Ikawa; Takeya Kasukawa; Hiroki R. Ueda; Kazuki Kurimoto; Mitinori Saitou; Fumio Matsuzaki

Cellular diversity of the brain is largely attributed to the spatial and temporal heterogeneity of progenitor cells. In mammalian cerebral development, it has been difficult to determine how heterogeneous the neural progenitor cells are, owing to dynamic changes in their nuclear position and gene expression. To address this issue, we systematically analyzed the cDNA profiles of a large number of single progenitor cells at the mid-embryonic stage in mouse. By cluster analysis and in situ hybridization, we have identified a set of genes that distinguishes between the apical and basal progenitors. Despite their relatively homogeneous global gene expression profiles, the apical progenitors exhibit highly variable expression patterns of Notch signaling components, raising the possibility that this causes the heterogeneous division patterns of these cells. Furthermore, we successfully captured the nascent state of basal progenitor cells. These cells are generated shortly after birth from the division of the apical progenitors, and show strong expression of the major Notch ligand delta-like 1, which soon fades away as the cells migrate in the ventricular zone. We also demonstrated that attenuation of Notch signals immediately induces differentiation of apical progenitors into nascent basal progenitors. Thus, a Notch-dependent feedback loop is likely to be in operation to maintain both progenitor populations.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Human blood metabolite timetable indicates internal body time.

Takeya Kasukawa; Masahiro Sugimoto; Akiko Hida; Yoichi Minami; Masayo Mori; Sato Honma; Kazuo Mishima; Tomoyoshi Soga; Hiroki R. Ueda

A convenient way to estimate internal body time (BT) is essential for chronotherapy and time-restricted feeding, both of which use body-time information to maximize potency and minimize toxicity during drug administration and feeding, respectively. Previously, we proposed a molecular timetable based on circadian-oscillating substances in multiple mouse organs or blood to estimate internal body time from samples taken at only a few time points. Here we applied this molecular-timetable concept to estimate and evaluate internal body time in humans. We constructed a 1.5-d reference timetable of oscillating metabolites in human blood samples with 2-h sampling frequency while simultaneously controlling for the confounding effects of activity level, light, temperature, sleep, and food intake. By using this metabolite timetable as a reference, we accurately determined internal body time within 3 h from just two anti-phase blood samples. Our minimally invasive, molecular-timetable method with human blood enables highly optimized and personalized medicine.

Collaboration


Dive into the Takeya Kasukawa's collaboration.

Top Co-Authors

Avatar

Piero Carninci

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasushi Okazaki

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marina Lizio

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Timo Lassmann

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge