Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideyuki Beppu is active.

Publication


Featured researches published by Hideyuki Beppu.


Molecular Cell | 2002

REDD1, a Developmentally Regulated Transcriptional Target of p63 and p53, Links p63 to Regulation of Reactive Oxygen Species

Leif W. Ellisen; Kate D Ramsayer; Cory M. Johannessen; Annie Yang; Hideyuki Beppu; Karolina Minda; Jonathan D Oliner; Frank McKeon; Daniel A. Haber

We identified REDD1 as a novel transcriptional target of p53 induced following DNA damage. During embryogenesis, REDD1 expression mirrors the tissue-specific pattern of the p53 family member p63, and TP63 null embryos show virtually no expression of REDD1, which is restored in mouse embryo fibroblasts following p63 expression. In differentiating primary keratinocytes, TP63 and REDD1 expression are coordinately downregulated, and ectopic expression of either gene inhibits in vitro differentiation. REDD1 appears to function in the regulation of reactive oxygen species (ROS); we show that TP63 null fibroblasts have decreased ROS levels and reduced sensitivity to oxidative stress, which are both increased following ectopic expression of either TP63 or REDD1. Thus, REDD1 encodes a shared transcriptional target that implicates ROS in the p53-dependent DNA damage response and in p63-mediated regulation of epithelial differentiation.


Molecular and Cellular Biology | 2004

Histone H3-K9 Methyltransferase ESET Is Essential for Early Development

Jonathan E. Dodge; Yong-Kook Kang; Hideyuki Beppu; Hong Lei; En Li

ABSTRACT Methylation of histone H3 at lysine 9 (H3-K9) mediates heterochromatin formation by forming a binding site for HP1 and also participates in silencing gene expression at euchromatic sites. ESET, G9a, SUV39-h1, SUV39-h2, and Eu-HMTase are histone methyltransferases that catalyze H3-K9 methylation in mammalian cells. Previous studies demonstrate that the SUV39-h proteins are preferentially targeted to the pericentric heterochromatin, and mice lacking both Suv39-h genes show cytogenetic abnormalities and an increased incidence of lymphoma. G9a methylates H3-K9 in euchromatin, and G9a null embryos die at 8.5 days postcoitum (dpc). G9a null embryo stem (ES) cells show altered DNA methylation in the Prader-Willi imprinted region and ectopic expression of the Mage genes. So far, an Eu-HMTase mouse knockout has not been reported. ESET catalyzes methylation of H3-K9 and localizes mainly in euchromatin. To investigate the in vivo function of Eset, we have generated an allele that lacks the entire pre- and post-SET domains and that expresses lacZ under the endogenous regulation of the Eset gene. We found that zygotic Eset expression begins at the blastocyst stage and is ubiquitous during postimplantation mouse development, while the maternal Eset transcripts are present in oocytes and persist throughout preimplantation development. The homozygous mutations of Eset resulted in peri-implantation lethality between 3.5 and 5.5 dpc. Blastocysts null for Eset were recovered but in less than Mendelian ratios. Upon culturing, 18 of 24 Eset−/− blastocysts showed defective growth of the inner cell mass and, in contrast to the ∼65% recovery of wild-type and Eset +/− ES cells, no Eset −/− ES cell lines were obtained. Global H3-K9 trimethylation and DNA methylation at IAP repeats in Eset −/− blastocyst outgrowths were not dramatically altered. Together, these results suggest that Eset is required for peri-implantation development and the survival of ES cells.


Circulation | 2005

Increased Susceptibility to Pulmonary Hypertension in Heterozygous BMPR2-Mutant Mice

Yanli Song; John E. Jones; Hideyuki Beppu; John F. Keaney; Joseph Loscalzo; Ying-Yi Zhang

Background—Bone morphogenetic protein receptor-2 (BMPR2)–heterozygous, mutant (BMPR2+/−) mice have a genetic trait similar to that of certain patients with idiopathic pulmonary arterial hypertension (IPAH). To understand the role of BMPR2 in the development of IPAH, we examined the phenotype of BMPR2+/− mice and their response to inflammatory stress. Methods and Results—BMPR2+/− mice were found to have the same life span, right ventricular systolic pressure (RVSP), and lung histology as those of wild-type mice under unstressed conditions. However, when treated with recombinant adenovirus expressing 5-lipoxygenase (Ad5LO), BMPR2+/− mice exhibited significantly higher RVSP than wild-type mice. The increase of RVSP occurred in the first 2 weeks after Ad5LO delivery. Modest but significant muscularization of distal pulmonary arterioles appeared in BMPR2+/− mice 4 weeks after Ad5LO treatment. Measurement of urinary metabolites of vasoactive molecules showed that cysteinyl leukotrienes, prostacyclin metabolites, and PGE2 were all increased to a similar degree in both BMPR2+/− and wild-type mice during 5LO transgene expression, whereas urinary endothelin-1 remained undetectable. Urinary thromboxane A2 metabolites, in contrast, were significantly higher in BMPR2+/− than in wild-type mice and paralleled the increase in RVSP. Platelet activation markers, serotonin, and soluble P-selectin showed a trend toward higher concentrations in BMPR2+/− than wild-type mice. Cell culture studies found that BMP treatment reduced interleukin-1β–stimulated thromboxane A2 production in the pulmonary epithelial cell line A549. Conclusions—BMPR2+/− mice do not develop pulmonary hypertension spontaneously; however, under inflammatory stress, they are more susceptible to an increase in RVSP, thromboxane A2 production, and vascular remodeling than wild-type mice.


Circulation | 2008

Genetic Ablation of the Bmpr2 Gene in Pulmonary Endothelium Is Sufficient to Predispose to Pulmonary Arterial Hypertension

Kwon-Ho Hong; Young Jae Lee; Eun-Ji Lee; Sung Ok Park; Chul Han; Hideyuki Beppu; En Li; Mohan K. Raizada; Kenneth D. Bloch; S. Paul Oh

Background— Pulmonary arterial hypertension (PAH) is a rare but fatal lung disease of diverse origins. PAH is now further subclassified as idiopathic PAH, familial PAH, and associated PAH varieties. Heterozygous mutations in BMPR2 can be detected in 50% to 70% of patients with familial PAH and 10% to 40% of patients with idiopathic PAH. Although endothelial cells have been suspected as the cellular origin of PAH pathogenesis, no direct in vivo evidence has been clearly presented. The present study was designed to investigate whether endothelial Bmpr2 deletion can predispose to PAH. Methods and Results— The Bmpr2 gene was deleted in pulmonary endothelial cells using Bmpr2 conditional knockout mice and a novel endothelial Cre transgenic mouse line. Wide ranges of right ventricular systolic pressure were observed in mice with heterozygous (21.7 to 44.1 mm Hg; median, 23.7 mm Hg) and homozygous (20.7 to 56.3 mm Hg; median, 27 mm Hg) conditional deletion of Bmpr2 in pulmonary endothelial cells compared with control mice (19.9 to 26.7 mm Hg; median, 23 mm Hg) at 2 to 7 months of age. A subset of mice with right ventricular systolic pressure >30 mm Hg exhibited right ventricular hypertrophy and an increase in the number and wall thickness of muscularized distal pulmonary arteries. In the lungs of these mice with high right ventricular systolic pressure, the expression of proteins involved in the pathogenesis of PAH such as serotonin transporter and tenascin-C was elevated in distal arteries and had a high incidence of perivascular leukocyte infiltration and in situ thrombosis. Conclusions— Conditional heterozygous or homozygous Bmpr2 deletion in pulmonary endothelial cells predisposes mice to develop PAH.


Molecular and Cellular Biology | 2000

Hgs (Hrs), a FYVE Domain Protein, Is Involved in Smad Signaling through Cooperation with SARA

Shigeto Miura; Toshikazu Takeshita; Hironobu Asao; Yutaka Kimura; Kazuko Murata; Yoshiteru Sasaki; Jun-ichi Hanai; Hideyuki Beppu; Tomoo Tsukazaki; Jeffrey L. Wrana; Kohei Miyazono; Kazuo Sugamura

ABSTRACT Smad proteins are effector molecules that transmit signals from the receptors for the transforming growth factor β (TGF-β) superfamily to the nucleus; of the Smad proteins, Smad2 and Smad4 are essential components for mouse early embryogenesis. We demonstrated that Hgs, a FYVE domain protein, binds to Smad2 in its C-terminal half and cooperates with another FYVE domain protein, the Smad anchor for receptor activation (SARA), to stimulate activin receptor-mediated signaling through efficient recruitment of Smad2 to the receptor. Furthermore, a LacZ knock-in allele of the C-terminal half-deletion mutant of mouse Hgs was created by gene targeting. The introduced mutation causes an embryonic lethality between embryonic days 8.5 and 10.5. Mutant cells showed significantly decreased responses to stimulation with activin and TGF-β. These findings suggest that the two FYVE domain proteins, Hgs and SARA, are prerequisites for receptor-mediated activation of Smad2.


Journal of Biological Chemistry | 2007

Repulsive guidance molecule (RGMa) alters utilization of bone morphogenetic protein (BMP) type II receptors by BMP2 and BMP4

Yin Xia; Paul B. Yu; Yisrael Sidis; Hideyuki Beppu; Kenneth D. Bloch; Alan L. Schneyer; Herbert Y. Lin

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β superfamily of multifunctional ligands that transduce their signals through type I and II serine/threonine kinase receptors and intracellular Smad proteins. Recently, we identified the glycosylphosphatidylinositol-anchored repulsive guidance molecules RGMa, DRAGON (RGMb), and hemojuvelin (RGMc) as coreceptors for BMP signaling (Babbit, J. L., Huang, F. W., Wrighting, D. W., Xia, Y., Sidis, Y., Samad, T. A., Campagna, J. A., Chung, R., Schneyer, A., Woolf, C. J., Andrews, N. C., and Lin, H. Y. (2006) Nat. Genet. 38, 531–539; Babbit, J. L., Zhang, Y., Samad, T. A., Xia, Y., Tang, J., Schneyer, A., Woolf, C. J., and Lin, H. Y. (2005) J. Biol. Chem. 280, 29820–29827; Samad, T. A., Rebbapragada, A., Bell, E., Zhang, Y., Sidis, Y., Jeong, S. J., Campagna, J. A., Perusini, S., Fabrizio, D. A., Schneyer, A. L., Lin, H. Y., Brivanlou, A. H., Attisano, L., and Woolf, C. J. (2005) J. Biol. Chem. 280, 14122–14129). However, the mechanism by which RGM family members enhance BMP signaling remains unknown. Here, we report that RGMa bound to radiolabeled BMP2 and BMP4 with Kd values of 2.4 ± 0.2 and 1.4 ± 0.1 nm, respectively. In KGN human ovarian granulosa cells and mouse pulmonary artery smooth muscle cells, BMP2 and BMP4 signaling required BMP receptor type II (BMPRII), but not activin receptor type IIA (ActRIIA) or ActRIIB, based on changes in BMP signaling by small interfering RNA inhibition of receptor expression. In contrast, cells transfected with RGMa utilized both BMPRII and ActRIIA for BMP2 or BMP4 signaling. Furthermore, in BmpRII-null pulmonary artery smooth muscle cells, BMP2 and BMP4 signaling was reduced by inhibition of endogenous RGMa expression, and RGMa-mediated BMP signaling required ActRIIA expression. These findings suggest that RGMa facilitates the use of ActRIIA by endogenous BMP2 and BMP4 ligands that otherwise prefer signaling via BMPRII and that increased utilization of ActRIIA leads to generation of an enhanced BMP signal.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Inflammation, endothelial injury, and persistent pulmonary hypertension in heterozygous BMPR2-mutant mice

Yanli Song; Laura Coleman; Jianru Shi; Hideyuki Beppu; Kaori Sato; Kenneth Walsh; Joseph Loscalzo; Ying-Yi Zhang

Heterozygous bone morphogenetic protein receptor-II-knockout (BMPR2(+/-)) mice have a similar genetic trait like that in some idiopathic pulmonary arterial hypertension patients. To examine the effect of pulmonary endothelial injury in BMPR2(+/-) mice, we challenged the mice with two injections of monocrotaline combined with intratracheal instillation of replication-deficient adenovirus expressing 5-lipoxygenase (MCT+Ad5LO). After the challenge (1 wk), BMPR2(+/-) mice exhibited a doubling of right ventricular systolic pressure that was greater than that of wild-type mice and remained elevated for 3 wk before heart failure developed. Muscularization and thickening of small pulmonary arterioles was evident in the BMPR2(+/-) lungs at 2 wk after the challenge and became severe at 3 wk. Marked perivascular infiltration of T cells, B cells, and macrophages was associated with the remodeled vessels. Real-time PCR analysis showed that the expression of six endothelial cell markers in lung tissue was decreased to 20-40% of original levels at 1 wk after the challenge in both BMPR2(+/-) and wild-type mice and largely recovered in wild-type (50-80%) but not BMPR2(+/-) lungs (30-50%) at 3 wk after the challenge. Macrophage inflammatory protein-1alpha and fractalkine receptor expression doubled in BMPR2(+/-) compared with wild-type lungs. Expression of type I and type II BMP receptors, but not transforming growth factor-beta receptors, in the challenged BMPR2(+/-) and wild-type lungs showed a similar pattern of expression as that of endothelial markers. Apoptotic responses at 1 wk after MCT and Ad5LO challenge were also significantly greater in the BMPR2(+/-) lungs than the wild-type lungs. These data show that BMPR2(+/-) mice are more sensitive to MCT+Ad5LO-induced pulmonary hypertension than wild-type mice. Greater endothelial injury and an enhanced inflammatory response could be the underlying causes of the sensitivity and may work in concert with BMPR2 heterozygosity to promote the development of persistent pulmonary hypertension.


Journal of Biological Chemistry | 2008

Bone Morphogenetic Protein (BMP) Type II Receptor Is Required for BMP-mediated Growth Arrest and Differentiation in Pulmonary Artery Smooth Muscle Cells

Paul B. Yu; Donna Y. Deng; Hideyuki Beppu; Charles C. Hong; Carol S Lai; Stefan A Hoyng; Noriko Kawai; Kenneth D. Bloch

Bone morphogenetic protein (BMP) signals regulate the growth and differentiation of diverse lineages. The association of mutations in the BMP type II receptor (BMPRII) with idiopathic pulmonary arterial hypertension suggests an important role of this receptor in vascular remodeling. Pulmonary artery smooth muscle cells lacking BMPRII can transduce BMP signals using ActRIIa (Activin type II receptor). We investigated whether or not BMP signaling via the two receptors leads to differential effects on vascular smooth muscle cells. BMP4, but not BMP7, inhibited platelet-derived growth factor-activated proliferation in wild-type pulmonary artery smooth muscle cells, whereas neither ligand inhibited the growth of BMPRII-deficient cells. Adenoviral gene transfer of BMPRII enabled BMP4, as well as BMP7, to inhibit proliferation in BMPRII-deficient cells. BMP-mediated growth inhibition was also reconstituted by the BMPRII short isoform, lacking the C-terminal domain present in the long form. BMP4, but not BMP7, induced the expression of osteoblast markers in wild-type cells, whereas neither ligand induced these markers in BMPRII-deficient cells. Overexpression of short or long forms of BMPRII in BMPRII-deficient cells enabled BMP4 and BMP7 to induce osteogenic differentiation. Although signaling via BMPRII or ActRIIa transiently activated SMAD1/5/8, only BMPRII signaling led to persistent SMAD1/5/8 activation and sustained increases in Id1 mRNA and protein expression. Pharmacologic blockade of BMP type I receptor function within 24 h after BMP stimulation abrogated differentiation. These data suggest that sustained BMP pathway activation, such as that mediated by BMPRII, is necessary for growth and differentiation control in vascular smooth muscle.


Journal of Cell Biology | 2009

Antagonism between Smad1 and Smad2 signaling determines the site of distal visceral endoderm formation in the mouse embryo

Masamichi Yamamoto; Hideyuki Beppu; Katsuyoshi Takaoka; Chikara Meno; En Li; Kohei Miyazono; Hiroshi Hamada

The anterior–posterior axis of the mouse embryo is established by formation of distal visceral endoderm (DVE) and its subsequent migration. The precise mechanism of DVE formation has remained unknown, however. Here we show that bone morphogenetic protein (BMP) signaling plays dual roles in DVE formation. BMP signaling is required at an early stage for differentiation of the primitive endoderm into the embryonic visceral endoderm (VE), whereas it inhibits DVE formation, restricting it to the distal region, at a later stage. A Smad2-activating factor such as Activin also contributes to DVE formation by generating a region of VE positive for the Smad2 signal and negative for Smad1 signal. DVE is thus formed at the distal end of the embryo, the only region of VE negative for the Smad1 signal and positive for Smad2 signal. An inverse relation between the level of phosphorylated Smad1 and that of phosphorylated Smad2 in VE suggests an involvement of antagonism between Smad1- and Smad2-mediated signaling.


Oncogene | 2008

Stromal inactivation of BMPRII leads to colorectal epithelial overgrowth and polyp formation

Hideyuki Beppu; Olive Mwizerwa; Yuko Beppu; M P Dattwyler; Gregory Y. Lauwers; Kenneth Daniel Bloch; Allan Moises Goldstein

Stromal–epithelial interactions play a central role in development and tumorigenesis. Bone morphogenetic protein (BMP) signaling in the intestine is involved in both of these processes. Inactivation of BMP pathway genes in the epithelium is known to cause intestinal polyposis. However, the role of the intestinal stroma in polyp initiation is incompletely understood. We observed that conditional inactivation of the BMP type II receptor (BMPRII) in the stroma leads to epithelial hyperplasia throughout the colon with increased epithelial cell proliferation. Mutant mice developed rectal bleeding and hamartomatous polyps in the colorectum. The polyps demonstrated increased proliferation of epithelial and mesenchymal cells in the mucosa with an expansion of the myofibroblast cell population. These results demonstrate that genetic mutations altering the BMP signaling pathway in the stromal microenvironment can lead to epithelial tumors in the colon.

Collaboration


Dive into the Hideyuki Beppu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul B. Yu

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

En Li

Harvard University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jana Bagarova

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Joseph Loscalzo

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge