Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth D. Bloch is active.

Publication


Featured researches published by Kenneth D. Bloch.


Circulation | 2007

Sildenafil Improves Exercise Capacity and Quality of Life in Patients With Systolic Heart Failure and Secondary Pulmonary Hypertension

Gregory D. Lewis; Ravi V. Shah; Khurram Shahzad; Janice Camuso; Paul P. Pappagianopoulos; Judy Hung; Ahmed Tawakol; Robert E. Gerszten; David M. Systrom; Kenneth D. Bloch; Marc J. Semigran

Background— Patients with systolic heart failure (HF) who develop secondary pulmonary hypertension (PH) have reduced exercise capacity and increased mortality compared with HF patients without PH. We tested the hypothesis that sildenafil, an effective therapy for pulmonary arterial hypertension, would lower pulmonary vascular resistance and improve exercise capacity in patients with HF complicated by PH. Methods and Results— Thirty-four patients with symptomatic HF and PH were randomized to 12 weeks of treatment with sildenafil (25 to 75 mg orally 3 times daily) or placebo. Patients underwent cardiopulmonary exercise testing before and after treatment. The change in peak &OV0312;o2 from baseline, the primary end point, was greater in the sildenafil group (1.8±0.7 mL · kg−1 · min−1) than in the placebo group (−0.27 mL · kg−1 · min−1; P=0.02). Sildenafil reduced pulmonary vascular resistance and increased cardiac output with exercise (P<0.05 versus placebo for both) without altering pulmonary capillary wedge or mean arterial pressure, heart rate, or systemic vascular resistance. The ability of sildenafil treatment to augment peak &OV0312;o2 correlated directly with baseline resting pulmonary vascular resistance (r=0.74, P=0.002) and indirectly with baseline resting right ventricular ejection fraction (r=−0.64, P=0.01). Sildenafil treatment also was associated with improvement in 6-minute walk distance (29 m versus placebo; P=0.047) and Minnesota Living With Heart Failure score (−14 versus placebo; P=0.01). Subjects in the sildenafil group experienced fewer hospitalizations for HF and a higher incidence of headache than those in the placebo group without incurring excess serious adverse events. Conclusions— Phosphodiesterase 5 inhibition with sildenafil improves exercise capacity and quality of life in patients with systolic HF with secondary PH.


Nature Medicine | 2008

BMP type I receptor inhibition reduces heterotopic ossification

Paul B. Yu; Donna Y. Deng; Carol S Lai; Charles C. Hong; Gregory D. Cuny; Mary L. Bouxsein; Deborah W Hong; Patrick M McManus; Takenobu Katagiri; Chetana Sachidanandan; Nobuhiro Kamiya; Tomokazu Fukuda; Yuji Mishina; Randall T. Peterson; Kenneth D. Bloch

Fibrodysplasia ossificans progressiva (FOP) is a congenital disorder of progressive and widespread postnatal ossification of soft tissues and is without known effective treatments. Affected individuals harbor conserved mutations in the ACVR1 gene that are thought to cause constitutive activation of the bone morphogenetic protein (BMP) type I receptor, activin receptor-like kinase-2 (ALK2). Here we show that intramuscular expression in the mouse of an inducible transgene encoding constitutively active ALK2 (caALK2), resulting from a glutamine to aspartic acid change at amino acid position 207, leads to ectopic endochondral bone formation, joint fusion and functional impairment, thus phenocopying key aspects of human FOP. A selective inhibitor of BMP type I receptor kinases, LDN-193189 (ref. 6), inhibits activation of the BMP signaling effectors SMAD1, SMAD5 and SMAD8 in tissues expressing caALK2 induced by adenovirus specifying Cre (Ad.Cre). This treatment resulted in a reduction in ectopic ossification and functional impairment. In contrast to localized induction of caALK2 by Ad.Cre (which entails inflammation), global postnatal expression of caALK2 (induced without the use of Ad.Cre and thus without inflammation) does not lead to ectopic ossification. However, if in this context an inflammatory stimulus was provided with a control adenovirus, ectopic bone formation was induced. Like LDN-193189, corticosteroid inhibits ossification in Ad.Cre-injected mutant mice, suggesting caALK2 expression and an inflammatory milieu are both required for the development of ectopic ossification in this model. These results support the role of dysregulated ALK2 kinase activity in the pathogenesis of FOP and suggest that small molecule inhibition of BMP type I receptor activity may be useful in treating FOP and heterotopic ossification syndromes associated with excessive BMP signaling.


Circulation | 2006

Sildenafil Improves Exercise Hemodynamics and Oxygen Uptake in Patients With Systolic Heart Failure

Gregory D. Lewis; Justine Lachmann; Janice Camuso; John J. Lepore; Jordan T. Shin; Maryann Martinovic; David M. Systrom; Kenneth D. Bloch; Marc J. Semigran

Background— Heart failure (HF) is frequently associated with dysregulation of nitric oxide–mediated pulmonary vascular tone. Sildenafil, a type 5 phosphodiesterase inhibitor, lowers pulmonary vascular resistance in pulmonary hypertension by augmenting intracellular levels of the nitric oxide second messenger, cyclic GMP. We tested the hypothesis that a single oral dose of sildenafil (50 mg) would improve exercise capacity and exercise hemodynamics in patients with chronic systolic HF through pulmonary vasodilation. Methods and Results— Thirteen patients with New York Heart Association class III HF underwent assessment of right heart hemodynamics, gas exchange, and first-pass radionuclide ventriculography at rest and with cycle ergometry before and 60 minutes after administration of 50 mg of oral sildenafil. Sildenafil reduced resting pulmonary arterial pressure, systemic vascular resistance, and pulmonary vascular resistance, and increased resting and exercise cardiac index (P<0.05 for all) without altering mean arterial pressure, heart rate, or pulmonary capillary wedge pressure. Sildenafil reduced exercise pulmonary arterial pressure, pulmonary vascular resistance, and pulmonary vascular resistance/systemic vascular resistance ratio, which indicates a selective pulmonary vasodilator effect with exercise. Peak &OV0312;o2 increased (15±9%) and ventilatory response to CO2 output (&OV0312;e/&OV0312;co2 slope) decreased (16±5%) after sildenafil treatment. Improvements in right heart hemodynamics and exercise capacity were confined to patients with secondary pulmonary hypertension (rest pulmonary arterial pressure >25 mm Hg). Conclusions— The present study shows that in patients with systolic HF, type 5 phosphodiesterase inhibition with sildenafil improves peak &OV0312;o2, reduces &OV0312;e/&OV0312;co2 slope, and acts as a selective pulmonary vasodilator during rest and exercise in patients with HF and pulmonary hypertension.


Nature Genetics | 2009

Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure

Christopher Newton-Cheh; Martin G. Larson; Daniel Levy; Kenneth D. Bloch; Aarti Surti; Candace Guiducci; Sekar Kathiresan; Emelia J. Benjamin; Joachim Struck; Nils G. Morgenthaler; Andreas Bergmann; Stefan Blankenberg; Frank Kee; Peter Nilsson; Xiaoyan Yin; Leena Peltonen; Erkki Vartiainen; Veikko Salomaa; Joel N. Hirschhorn; Olle Melander; Thomas J. Wang

We examined the association of common variants at the NPPA-NPPB locus with circulating concentrations of the natriuretic peptides, which have blood pressure–lowering properties. We genotyped SNPs at the NPPA-NPPB locus in 14,743 individuals of European ancestry, and identified associations of plasma atrial natriuretic peptide with rs5068 (P = 8 × 10−70), rs198358 (P = 8 × 10−30) and rs632793 (P = 2 × 10−10), and of plasma B-type natriuretic peptide with rs5068 (P = 3 × 10−12), rs198358 (P = 1 × 10−25) and rs632793 (P = 2 × 10−68). In 29,717 individuals, the alleles of rs5068 and rs198358 that showed association with increased circulating natriuretic peptide concentrations were also found to be associated with lower systolic (P = 2 × 10−6 and 6 × 10−5, respectively) and diastolic blood pressure (P = 1 × 10−6 and 5 × 10−5), as well as reduced odds of hypertension (OR = 0.85, 95% CI = 0.79–0.92, P = 4 × 10−5; OR = 0.90, 95% CI = 0.85–0.95, P = 2 × 10−4, respectively). Common genetic variants at the NPPA-NPPB locus found to be associated with circulating natriuretic peptide concentrations contribute to interindividual variation in blood pressure and hypertension.


Cell | 1986

Neonatal atria and ventricles secrete atrial natriuretic factor via tissue-specific secretory pathways

Kenneth D. Bloch; Jonathan G. Seidman; Janice D. Naftilan; John T. Fallon; Christine E. Seidman

The cellular mechanisms regulating secretion of the peptide hormone atrial natriuretic factor (ANF) differ in neonatal atrial and ventricular cardiocytes. We demonstrate that although both cell types synthesize and secrete ANF, only atrial cells store peptide in abundant secretory granules. Neonatal ventricular cells secrete ANF rapidly after synthesis and lack secretory granules. We propose that ventricular ANF is released by a constitutive secretory pathway whereas atrial ANF is stored and released by a regulated pathway. Furthermore, ventricular ANF mRNA and hormone concentrations decrease during the first week of life. Developmental variation in the use of ANF secretory pathways may reflect changing requirements for maintenance of intravascular volume and pressure. Tissue-specific modulation of hormone secretory pathways appears to be a novel response to developmentally induced changes in the requirements for a peptide hormone.


Journal of Clinical Investigation | 1998

Sustained pulmonary hypertension and right ventricular hypertrophy after chronic hypoxia in mice with congenital deficiency of nitric oxide synthase 3.

Wolfgang Steudel; Marielle Scherrer-Crosbie; Kenneth D. Bloch; Jörg Weimann; Paul L. Huang; Rosemary Jones; Michael H. Picard; Warren M. Zapol

Chronic hypoxia induces pulmonary hypertension and right ventricular (RV) hypertrophy. Nitric oxide (NO) has been proposed to modulate the pulmonary vascular response to hypoxia. We investigated the effects of congenital deficiency of endothelial NO synthase (NOS3) on the pulmonary vascular responses to breathing 11% oxygen for 3-6 wk. After 3 wk of hypoxia, RV systolic pressure was greater in NOS3-deficient than in wild-type mice (35+/-2 vs 28+/-1 mmHg, x+/-SE, P < 0.001). Pulmonary artery pressure (PPA) and incremental total pulmonary vascular resistance (RPI) were greater in NOS3-deficient than in wild-type mice (PPA 22+/-1 vs 19+/-1 mmHg, P < 0.05 and RPI 92+/-11 vs 55+/-5 mmHg.min.gram.ml-1, P < 0.05). Morphometry revealed that the proportion of muscularized small pulmonary vessels was almost fourfold greater in NOS3-deficient mice than in wild-type mice. After 6 wk of hypoxia, the increase of RV free wall thickness, measured by transesophageal echocardiography, and of RV weight/body weight ratio were more marked in NOS3-deficient mice than in wild-type mice (RV wall thickness 0.67+/-0.05 vs 0.48+/-0.02 mm, P < 0.01 and RV weight/body weight ratio 2.1+/-0.2 vs 1.6+/-0.1 mg. gram-1, P < 0.05). RV hypertrophy produced by chronic hypoxia was prevented by breathing 20 parts per million NO in both genotypes of mice. These results suggest that congenital NOS3 deficiency enhances hypoxic pulmonary vascular remodeling and hypertension, and RV hypertrophy, and that NO production by NOS3 is vital to counterbalance pulmonary vasoconstriction caused by chronic hypoxic stress.


Bioorganic & Medicinal Chemistry Letters | 2008

Structure–activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors

Gregory D. Cuny; Paul B. Yu; Joydev K. Laha; Xuechao Xing; Ji-Feng Liu; Carol S Lai; Donna Y. Deng; Chetana Sachidanandan; Kenneth D. Bloch; Randall T. Peterson

A structure-activity relationship study of dorsomorphin, a previously identified inhibitor of SMAD 1/5/8 phosphorylation by bone morphogenetic protein (BMP) type 1 receptors ALK2, 3, and 6, revealed that increased inhibitory activity could be accomplished by replacing the pendent 4-pyridine ring with 4-quinoline. The activity contributions of various nitrogen atoms in the core pyrazolo[1,5-a]pyrimidine ring were also examined by preparing and evaluating pyrrolo[1,2-a]pyrimidine and pyrazolo[1,5-a]pyridine derivatives. In addition, increased mouse liver microsome stability was achieved by replacing the ether substituent on the pendent phenyl ring with piperazine. Finally, an optimized compound 13 (LDN-193189 or DM-3189) demonstrated moderate pharmacokinetic characteristics (e.g., plasma t(1/2)=1.6h) following intraperitoneal administration in mice. These studies provide useful molecular probes for examining the in vivo pharmacology of BMP signaling inhibition.


Journal of Clinical Investigation | 1990

Expression of the potent vasoconstrictor endothelin in the human central nervous system.

Mu-En Lee; S. M. de la Monte; Shi-Chung Ng; Kenneth D. Bloch; Thomas Quertermous

Endothelin is a potent vasoconstrictive peptide initially characterized as a product of endothelial cells. To examine the potential role of endothelin as a neuropeptide, we studied its distribution in the human central nervous system. RNA blot hybridization provided evidence of endothelin gene transcription in a variety of functional regions of the brain. In situ hybridization confirmed the widespread pattern of endothelin transcription and indicated that the highest density of cells containing endothelin mRNA is in the hypothalamus. This technique localized endothelin transcription to cells of the nervous system as well as the vascular endothelium. Immunocytochemical studies detected endothelin immunoreactivity in neurons, providing evidence of the synthesis of the peptide in this cell type and confirming that endothelin is a neuropeptide. Although the prominent expression of endothelin in the hypothalamus may indicate a central vasoregulatory role for the peptide, the widespread distribution of endothelin in neurons in other areas of the brain implies a more fundamental role in the regulation of nervous system function.


Anesthesiology | 2000

Sildenafil is a pulmonary vasodilator in awake lambs with acute pulmonary hypertension.

Jörg Weimann; Roman Ullrich; Jonathan Hromi; Yuji Fujino; Martin W. H. Clark; Kenneth D. Bloch; Warren M. Zapol

Background Phosphodiesterase type 5 (PDE5) hydrolyzes cyclic guanosine monophosphate in the lung, thereby modulating nitric oxide (NO)/cyclic guanosine monophosphate–mediated pulmonary vasodilation. Inhibitors of PDE5 have been proposed for the treatment of pulmonary hypertension. In this study, we examined the pulmonary and systemic vasodilator properties of sildenafil, a novel selective PDE5 inhibitor, which has been approved for the treatment of erectile dysfunction. Methods In an awake lamb model of acute pulmonary hypertension induced by an intravenous infusion of the thromboxane analog U46619, we measured the effects of 12.5, 25, and 50 mg sildenafil administered via a nasogastric tube on pulmonary and systemic hemodynamics (n = 5). We also compared the effects of sildenafil (n = 7) and zaprinast (n = 5), a second PDE5 inhibitor, on the pulmonary vasodilator effects of 2.5, 10, and 40 parts per million inhaled NO. Finally, we examined the effect of infusing intravenous l-NAME (an inhibitor of endogenous NO production) on pulmonary vasodilation induced by 50 mg sildenafil (n = 6). Results Cumulative doses of sildenafil (12.5, 25, and 50 mg) decreased the pulmonary artery pressure 21%, 28%, and 42%, respectively, and the pulmonary vascular resistance 19%, 23%, and 45%, respectively. Systemic arterial pressure decreased 12% only after the maximum cumulative sildenafil dose. Neither sildenafil nor zaprinast augmented the ability of inhaled NO to dilate the pulmonary vasculature. Zaprinast, but not sildenafil, markedly prolonged the duration of pulmonary vasodilation after NO inhalation was discontinued. Infusion of l-NAME abolished sildenafil-induced pulmonary vasodilation. Conclusions Sildenafil is a selective pulmonary vasodilator in an ovine model of acute pulmonary hypertension. Sildenafil induces pulmonary vasodilation via a NO-dependent mechanism. In contrast to zaprinast, sildenafil did not prolong the pulmonary vasodilator action of inhaled NO.


Circulation Research | 2004

Cardiomyocyte-Specific Overexpression of Nitric Oxide Synthase 3 Improves Left Ventricular Performance and Reduces Compensatory Hypertrophy After Myocardial Infarction

Stefan Janssens; Peter Pokreisz; Luc Schoonjans; Marijke Pellens; Pieter Vermeersch; Marc Tjwa; Peter Jans; Marielle Scherrer-Crosbie; Michael H. Picard; Zsolt Szelid; Hilde Gillijns; Frans Van de Werf; Desire Collen; Kenneth D. Bloch

Nitric oxide (NO) is an important modulator of cardiac performance and left ventricular (LV) remodeling after myocardial infarction (MI). We tested the effect of cardiomyocyte-restricted overexpression of one NO synthase isoform, NOS3, on LV remodeling after MI in mice. LV structure and function before and after permanent LAD coronary artery ligation were compared in transgenic mice with cardiomyocyte-restricted NOS3 overexpression (NOS3-TG) and their wild-type littermates (WT). Before MI, systemic hemodynamic measurements, echocardiographic assessment of LV fractional shortening (FS), heart weight, and myocyte width (as assessed histologically) did not differ in NOS3-TG and WT mice. The inotropic response to graded doses of isoproterenol was significantly reduced in NOS3-TG mice. One week after LAD ligation, the infarcted fraction of the LV did not differ in WT and NOS3-TG mice (34 ± 4% versus 36 ± 12%, respectively). Four weeks after MI, however, end-systolic LVID was greater, and fractional shortening and maximum and minimum rates of LV pressure development were less in WT than in NOS3-TG mice. LV weight/body weight ratio was greater in WT than in NOS3-TG mice (5.3 ± 0.2 versus 4.6 ± 0.5 mg/g; P < 0.01). Myocyte width in noninfarcted myocardium was greater in WT than in NOS3-TG mice (18.8 ± 2.0 versus 16.6 ± 1.6 μm; P < 0.05), whereas fibrosis in noninfarcted myocardium was similar in both genotypes. Cardiomyocyte-restricted overexpression of NOS3 limits LV dysfunction and remodeling after MI, in part by decreasing myocyte hypertrophy in noninfarcted myocardium.

Collaboration


Dive into the Kenneth D. Bloch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Janssens

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge