Hilary Frase
University of Notre Dame
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hilary Frase.
Journal of Biological Chemistry | 2009
Hilary Frase; Qicun Shi; Sebastian A. Testero; Shahriar Mobashery; Sergei B. Vakulenko
A major mechanism of bacterial resistance to β-lactam antibiotics (penicillins, cephalosporins, carbapenems, etc.) is the production of β-lactamases. A handful of class A β-lactamases have been discovered that have acquired the ability to turn over carbapenem antibiotics. This is a disconcerting development, as carbapenems are often considered last resort antibiotics in the treatment of difficult infections. The GES family of β-lactamases constitutes a group of extended spectrum resistance enzymes that hydrolyze penicillins and cephalosporins avidly. A single amino acid substitution at position 170 has expanded the breadth of activity to include carbapenems. The basis for this expansion of activity is investigated in this first report of detailed steady-state and pre-steady-state kinetics of carbapenem hydrolysis, performed with a class A carbapenemase. Monitoring the turnover of imipenem (a carbapenem) by GES-1 (Gly-170) revealed the acylation step as rate-limiting. GES-2 (Asn-170) has an enhanced rate of acylation, compared with GES-1, and no longer has a single rate-determining step. Both the acylation and deacylation steps are of equal magnitude. GES-5 (Ser-170) exhibits an enhancement of the rate constant for acylation by a remarkable 5000-fold, whereby the enzyme acylation event is no longer rate-limiting. This carbapenemase exhibits kcat/Km of 3 × 105 m−1s−1, which is sufficient for manifestation of resistance against imipenem.
Antimicrobial Agents and Chemotherapy | 2014
Nuno T. Antunes; Toni L. Lamoureaux; Marta Toth; Nichole K. Stewart; Hilary Frase; Sergei B. Vakulenko
ABSTRACT Carbapenem-hydrolyzing class D β-lactamases (CHDLs) are enzymes of the utmost clinical importance due to their ability to produce resistance to carbapenems, the antibiotics of last resort for the treatment of various life-threatening infections. The vast majority of these enzymes have been identified in Acinetobacter spp., notably in Acinetobacter baumannii. The OXA-2 and OXA-10 enzymes predominantly occur in Pseudomonas aeruginosa and are currently classified as narrow-spectrum class D β-lactamases. Here we demonstrate that when OXA-2 and OXA-10 are expressed in Escherichia coli strain JM83, they produce a narrow-spectrum antibiotic resistance pattern. When the enzymes are expressed in A. baumannii ATCC 17978, however, they behave as extended-spectrum β-lactamases and confer resistance to carbapenem antibiotics. Kinetic studies of OXA-2 and OXA-10 with four carbapenems have demonstrated that their catalytic efficiencies with these antibiotics are in the same range as those of some recognized class D carbapenemases. These results are in disagreement with the classification of the OXA-2 and OXA-10 enzymes as narrow-spectrum β-lactamases, and they suggest that other class D enzymes that are currently regarded as noncarbapenemases may in fact be CHDLs.
Journal of the American Chemical Society | 2010
Marta Toth; Clyde A. Smith; Hilary Frase; Shahriar Mobashery; Sergei B. Vakulenko
We describe herein a highly proficient class A beta-lactamase OIH-1 from the bacterium Oceanobacillus iheyensis, whose habitat is the sediment at a depth of 1050 m in the Pacific Ocean. The OIH-1 structure was solved by molecular replacement and refined at 1.25 A resolution. OIH-1 has evolved to be an extremely halotolerant beta-lactamase capable of hydrolyzing its substrates in the presence of NaCl at saturating concentration. Not only is this the most highly halotolerant bacterial enzyme structure known to date, it is also the highest resolution halophilic protein structure yet determined. Evolution of OIH-1 in the salinity of the ocean has resulted in a molecular surface that is coated with acidic residues, a marked difference from beta-lactamases of terrestrial sources. OIH-1 is the first example of an antibiotic-resistance enzyme that has evolved in the depths of the ocean in isolation from clinical selection and gives us an extraordinary glimpse into protein evolution under extreme conditions. It represents evidence for the existence of a reservoir of antibiotic-resistance enzymes in nature among microbial populations from deep oceanic sources.
Protein Science | 2010
Marta Toth; Hilary Frase; Nuno T. Antunes; Sergei B. Vakulenko
Acquired resistance to aminoglycoside antibiotics primarily results from deactivation by three families of aminoglycoside‐modifying enzymes. Here, we report the kinetic mechanism and structure of the aminoglycoside phosphotransferase 2″‐IVa (APH(2″)‐IVa), an enzyme responsible for resistance to aminoglycoside antibiotics in clinical enterococcal and staphylococcal isolates. The enzyme operates via a Bi‐Bi sequential mechanism in which the two substrates (ATP or GTP and an aminoglycoside) bind in a random manner. The APH(2″)‐IVa enzyme phosphorylates various 4,6‐disubstituted aminoglycoside antibiotics with catalytic efficiencies (kcat/Km) of 1.5 × 103 to 1.2 × 106 (M−1 s−1). The enzyme uses both ATP and GTP as the phosphate source, an extremely rare occurrence in the phosphotransferase and protein kinase enzymes. Based on an analysis of the APH(2″)‐IVa structure, two overlapping binding templates specifically tuned for hydrogen bonding to either ATP or GTP have been identified and described. A detailed understanding of the structure and mechanism of the GTP‐utilizing phosphotransferases is crucial for the development of either novel aminoglycosides or, more importantly, GTP‐based enzyme inhibitors which would not be expected to interfere with crucial ATP‐dependent enzymes.
Journal of Biological Chemistry | 2012
Clyde A. Smith; Marta Toth; Hilary Frase; Laura J. Byrnes; Sergei B. Vakulenko
Background: Aminoglycoside kinases (APHs), structurally related to the protein kinases, are responsible for acquired resistance to aminoglycoside antibiotics. Results: The structure of GTP-dependent APH(2′′)-IIIa shows that both GTP and ATP recognition sites are located on the same nucleotide binding motif. Conclusion: This enzyme uses exclusively GTP because the ATP binding site is blocked. Significance: This is the first structure of an exclusively GTP-dependent kinase enzyme. Contrary to the accepted dogma that ATP is the canonical phosphate donor in aminoglycoside kinases and protein kinases, it was recently demonstrated that all members of the bacterial aminoglycoside 2′′-phosphotransferase IIIa (APH(2′′)) aminoglycoside kinase family are unique in their ability to utilize GTP as a cofactor for antibiotic modification. Here we describe the structural determinants for GTP recognition in these enzymes. The crystal structure of the GTP-dependent APH(2′′)-IIIa shows that although this enzyme has templates for both ATP and GTP binding superimposed on a single nucleotide specificity motif, access to the ATP-binding template is blocked by a bulky tyrosine residue. Substitution of this tyrosine by a smaller amino acid opens access to the ATP template. Similar GTP binding templates are conserved in other bacterial aminoglycoside kinases, whereas in the structurally related eukaryotic protein kinases this template is less conserved. The aminoglycoside kinases are important antibiotic resistance enzymes in bacteria, whose wide dissemination severely limits available therapeutic options, and the GTP binding templates could be exploited as new, previously unexplored targets for inhibitors of these clinically important enzymes.
Antimicrobial Agents and Chemotherapy | 2012
Nuno T. Antunes; Hilary Frase; Marta Toth; Sergei B. Vakulenko
ABSTRACT The class A β-lactamase FTU-1 produces resistance to penicillins and ceftazidime but not to any other β-lactam antibiotics tested. FTU-1 hydrolyzes penicillin antibiotics with catalytic efficiencies of 105 to 106 M−1 s−1 and cephalosporins and carbapenems with catalytic efficiencies of 102 to 103 M−1 s−1, but the monobactam aztreonam and the cephamycin cefoxitin are not substrates for the enzyme. FTU-1 shares 21 to 34% amino acid sequence identity with other class A β-lactamases and harbors two cysteine residues conserved in all class A carbapenemases. FTU-1 is the first weak class A carbapenemase that is native to Francisella tularensis.
Biochemistry | 2011
Nuno T. Antunes; Hilary Frase; Marta Toth; Shahriar Mobashery; Sergei B. Vakulenko
The Glu166Arg/Met182Thr mutant of Escherichia coli TEM(pTZ19-3) β-lactamase produces a 128-fold increase in the level of resistance to the antibiotic ceftazidime in comparison to that of the parental wild-type enzyme. The single Glu166Arg mutation resulted in a dramatic decrease in both the level of enzyme expression in bacteria and the resistance to penicillins, with a concomitant 4-fold increase in the resistance to ceftazidime, a third-generation cephalosporin. Introduction of the second amino acid substitution, Met182Thr, restored enzyme expression to a level comparable to that of the wild-type enzyme and resulted in an additional 32-fold increase in the minimal inhibitory concentration of ceftazidime to 64 μg/mL. The double mutant formed a stable covalent complex with ceftazidime that remained intact for the entire duration of the monitoring, which exceeded a time period of 40 bacterial generations. Compared to those of the wild-type enzyme, the affinity of the TEM(pTZ19-3) Glu166Arg/Met182Thr mutant for ceftazidime increased by at least 110-fold and the acylation rate constant was augmented by at least 16-fold. The collective experimental data and computer modeling indicate that the deacylation-deficient Glu166Arg/Met182Thr mutant of TEM(pTZ19-3) produces resistance to the third-generation cephalosporin ceftazidime by an uncommon covalent-trapping mechanism. This is the first documentation of such a mechanism by a class A β-lactamase in a manifestation of resistance.
Antimicrobial Agents and Chemotherapy | 2013
Marta Toth; Hilary Frase; Nuno T. Antunes; Sergei B. Vakulenko
ABSTRACT Aminoglycoside 2″-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci. We describe a novel aminoglycoside 2″-phosphotransferase from the Gram-negative pathogen Campylobacter jejuni, which shares 78% amino acid sequence identity with the APH(2″)-Ia domain of the bifunctional aminoglycoside-modifying enzyme aminoglycoside (6′) acetyltransferase-Ie/aminoglycoside 2″-phosphotransferase-Ia or AAC(6′)-Ie/APH(2″)-Ia from Gram-positive cocci, which we called APH(2″)-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin, but not to any of the 4,5-disubstituted antibiotics tested. Steady-state kinetic studies demonstrated that GTP, and not ATP, is the preferred cosubstrate for APH(2″)-If. The enzyme phosphorylates the majority of 4,6-disubstituted aminoglycosides with high catalytic efficiencies (kcat/Km = 105 to 107 M−1 s−1), while the catalytic efficiencies against the 4,6-disubstituted antibiotics amikacin and isepamicin are 1 to 2 orders of magnitude lower, due mainly to the low apparent affinities of these substrates for the enzyme. Both 4,5-disubstituted antibiotics and the atypical aminoglycoside neamine are not substrates of APH(2″)-If, but are inhibitors. The antibiotic susceptibility and substrate profiles of APH(2″)-If are very similar to those of the APH(2″)-Ia phosphotransferase domain of the bifunctional AAC(6′)-Ie/APH(2″)-Ia enzyme.
Journal of Biological Chemistry | 2012
Hilary Frase; Marta Toth; Sergei B. Vakulenko
Background: The bifunctional AAC(6′)-Ie/APH(2″)-Ia enzyme was reported to phosphorylate all classes of aminoglycoside antibiotics using ATP. Results: GTP, and not ATP, is the cosubstrate of the enzyme. 4,5-disubstituted and atypical aminoglycosides are not substrates. Conclusion: The enzyme is a narrow spectrum GTP-dependent kinase that phosphorylates 4,6-disubstituted aminoglycosides exclusively. Significance: Knowledge of enzyme activity is essential for developing novel antibiotics and conducting effective antimicrobial therapy. The bifunctional aminoglycoside-modifying enzyme aminoglycoside acetyltransferase(6′)-Ie/aminoglycoside phosphotransferase(2″)-Ia, or AAC(6′)-Ie/APH(2″)-Ia, is the major source of aminoglycoside resistance in Gram-positive bacterial pathogens. In previous studies, using ATP as the cosubstrate, it was reported that the APH(2″)-Ia domain of this enzyme is unique among aminoglycoside phosphotransferases, having the ability to inactivate an unusually broad spectrum of aminoglycosides, including 4,6- and 4,5-disubstituted and atypical. We recently demonstrated that GTP, and not ATP, is the preferred cosubstrate of this enzyme. We now show, using competition assays between ATP and GTP, that GTP is the exclusive phosphate donor at intracellular nucleotide levels. In light of these findings, we reevaluated the substrate profile of the phosphotransferase domain of this clinically important enzyme. Steady-state kinetic characterization using the phosphate donor GTP demonstrates that AAC(6′)-Ie/APH(2″)-Ia phosphorylates 4,6-disubstituted aminoglycosides with high efficiency (kcat/Km = 105-107 m−1 s−1). Despite this proficiency, no resistance is conferred to some of these antibiotics by the enzyme in vivo. We now show that phosphorylation of 4,5-disubstituted and atypical aminoglycosides are negligible and thus these antibiotics are not substrates. Instead, these aminoglycosides tend to stimulate an intrinsic GTPase activity of the enzyme. Taken together, our data show that the bifunctional enzyme efficiently phosphorylates only 4,6-disubstituted antibiotics; however, phosphorylation does not necessarily result in bacterial resistance. Hence, the APH(2″)-Ia domain of the bifunctional AAC(6′)-Ie/APH(2″)-Ia enzyme is a bona fide GTP-dependent kinase with a narrow substrate profile, including only 4,6-disubstituted aminoglycosides.
Journal of Biological Chemistry | 2011
Hilary Frase; Clyde A. Smith; Marta Toth; Matthew M. Champion; Shahriar Mobashery; Sergei B. Vakulenko
The GES-2 β-lactamase is a class A carbapenemase, the emergence of which in clinically important bacterial pathogens is a disconcerting development as the enzyme confers resistance to carbapenem antibiotics. Tazobactam is a clinically used inhibitor of class A β-lactamases, which inhibits the GES-2 enzyme effectively, restoring susceptibility to β-lactam antibiotics. We have investigated the details of the mechanism of inhibition of the GES-2 enzyme by tazobactam. By the use of UV spectrometry, mass spectroscopy, and x-ray crystallography, we have documented and identified the involvement of a total of seven distinct GES-2·tazobactam complexes and one product of the hydrolysis of tazobactam that contribute to the inhibition profile. The x-ray structures for the GES-2 enzyme are for both the native (1.45 Å) and the inhibited complex with tazobactam (1.65 Å). This is the first such structure of a carbapenemase in complex with a clinically important β-lactam inhibitor, shedding light on the structural implications for the inhibition process.