Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hilde Schjerven is active.

Publication


Featured researches published by Hilde Schjerven.


Nature Immunology | 2008

Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros

Damien Reynaud; Ignacio A. Demarco; Hilde Schjerven; Eric Bertolino; Zhengshan Chen; Stephen T. Smale; Susan Winandy; Harinder Singh

The transcription factor Ikaros is essential for B cell development. However, its molecular functions in B cell fate specification and commitment have remained elusive. We show here that the transcription factor EBF restored the generation of CD19+ pro–B cells from Ikaros-deficient hematopoietic progenitors. Notably, these pro–B cells, despite having normal expression of the transcription factors EBF and Pax5, were not committed to the B cell fate. They also failed to recombine variable gene segments at the immunoglobulin heavy-chain locus. Ikaros promoted heavy-chain gene rearrangements by inducing expression of the recombination-activating genes as well as by controlling accessibility of the variable gene segments and compaction of the immunoglobulin heavy-chain locus. Thus, Ikaros is an obligate component of a network that regulates B cell fate commitment and immunoglobulin heavy-chain gene recombination.


Journal of Immunology | 2005

Regulation of the Polymeric Ig Receptor by Signaling through TLRs 3 and 4: Linking Innate and Adaptive Immune Responses

Tracey A. Schneeman; Maria E. C. Bruno; Hilde Schjerven; Finn-Eirik Johansen; Laura Chady; Charlotte S. Kaetzel

IgA Abs help to maintain homeostasis at mucosal surfaces by promoting defense mechanisms that protect against pathogens while suppressing inflammatory responses to commensal organisms and food Ags. The polymeric Ig receptor (pIgR) mediates transport of IgA across mucosal epithelial cells. We hypothesized that signaling through TLRs may up-regulate pIgR expression by intestinal epithelial cells and thus enhance IgA-mediated homeostasis. To test this hypothesis we treated the HT29 human intestinal epithelial cell line with dsRNA, a ligand for TLR3, or LPS, a ligand for TLR4. Both dsRNA and LPS up-regulated levels of pIgR mRNA and cell surface pIgR protein. By contrast, dsRNA but not LPS up-regulated expression of TLR3 and TLR4 mRNA. However, cell surface expression of both TLR3 and TLR4 was enhanced by treatment of HT29 cells with their respective ligands. Transfection of HT29 cells with wild-type and mutated promoter/enhancer plasmids suggested that TLR3 and TLR4 signal primarily through NF-κB to enhance transcription of pIgR mRNA. TLR3 signaling resulted in a more pronounced inflammatory response than did TLR4, as evidenced by up-regulation of the transcription factor IFN regulatory factor-1, chemokines IL-8 and RANTES, and the proinflammatory cytokine TNF. Signaling through LPS/TLR4 appears to up-regulate pIgR expression while minimizing proinflammatory responses, a mechanism that could promote IgA-mediated homeostasis in the presence of commensal Gram-negative bacteria.


Nature Immunology | 2013

Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros

Hilde Schjerven; Jami McLaughlin; Teresita L. Arenzana; Seth Frietze; Donghui Cheng; Sarah E Wadsworth; Gregory W. Lawson; Steven J. Bensinger; Peggy J. Farnham; Owen N. Witte; Stephen T. Smale

C2H2 zinc fingers are found in several key transcriptional regulators in the immune system. However, these proteins usually contain more fingers than are needed for sequence-specific DNA binding, which suggests that different fingers regulate different genes and functions. Here we found that mice lacking finger 1 or finger 4 of Ikaros exhibited distinct subsets of the hematological defects of Ikaros-null mice. Most notably, the two fingers controlled different stages of lymphopoiesis, and finger 4 was selectively required for tumor suppression. The distinct defects support the hypothesis that only a small number of genes that are targets of Ikaros are critical for each of its biological functions. The subcategorization of functions and target genes by mutagenesis of individual zinc fingers will facilitate efforts to understand how zinc-finger transcription factors regulate development, immunity and disease.


Journal of Biological Chemistry | 1997

E2F-MEDIATED GROWTH REGULATION REQUIRES TRANSCRIPTION FACTOR COOPERATION

Paul R. van Ginkel; Kuang-Ming Hsiao; Hilde Schjerven; Peggy J. Farnham

Previous studies have indicated that the presence of an E2F site is not sufficient for G1/S phase transcriptional regulation. For example, the E2F sites in the E2F1 promoter are necessary, but not sufficient, to mediate differential promoter activity in G0 and S phase. We have now utilized the E2F1 minimal promoter to test several hypotheses that could account for these observations. To test the hypothesis that G1/S phase regulation is achieved via E2F-mediated repression of a strong promoter, a variety of transactivation domains were brought to the E2F1 minimal promoter. Although many of these factors caused increased promoter activity, growth regulation was not observed, suggesting that a general repression model is incorrect. However, constructs having CCAAT or YY1 sites or certain GC boxes cloned upstream of the E2F1 minimal promoter displayed E2F site-dependent regulation. Further analysis of the promoter activity suggested that E2F requires cooperation with another factor to activate transcription in S phase. However, we found that the requirement for E2F to cooperate with additional factors to achieve growth regulation could be relieved by bringing the E2F1 activation domain to the promoter via a Gal4 DNA binding domain. Our results suggest a model that explains why some, but not all, promoters that contain E2F sites display growth regulation.


Journal of Immunology | 2000

Mechanism of IL-4-Mediated Up-Regulation of the Polymeric Ig Receptor: Role of STAT6 in Cell Type-Specific Delayed Transcriptional Response

Hilde Schjerven; Per Brandtzaeg; Finn-Eirik Johansen

The polymeric IgR (pIgR) mediates transport of dimeric IgA and pentameric IgM across mucosal epithelia, thereby generating secretory Abs. Its expression is up-regulated at the transcriptional level by IL-4 in HT-29 cells. In this study, we demonstrate that IL-4 mediates up-regulation of human pIgR through a 554-bp IL-4-responsive enhancer in intron 1. Mutation of a binding site for STAT-6 within this region abolished IL-4-induced enhancement, while an adjacent putative C/EBP site was dispensable. IL-4 treatment induced binding of STAT6 to the intronic STAT6 site, but cooperation with nearby upstream and downstream DNA elements was required for IL-4 responsiveness. Furthermore, IL-4-mediated increased transcription of the pIgR-derived enhancer, like the endogenous pIgR gene, required de novo protein synthesis. Interestingly, a conditionally active form of STAT6 sufficed to activate a pIgR-derived enhancer in HT-29 cells, but not in Cos-1 cells, suggesting a requirement for cell type-specific factors. Thus, STAT6 activation mediates a delayed transcriptional enhancement of pIgR by induction of a de novo synthesized protein that cooperates with STAT6 itself bound to its cognate DNA element in intron 1. This mechanism may represent a general strategy for how pleiotropic cytokines elicit cell type-specific transcriptional responses.


British Journal of Dermatology | 2003

Proinflammatory cytokines upregulate expression of calprotectin (L1 protein, MRP-8/MRP-14) in cultured human keratinocytes

G. Mørk; Hilde Schjerven; L. Mangschau; E. Søyland; Per Brandtzaeg

Background  Normal skin contains no epidermal calprotectin. In biopsies from various inflammatory skin disorders, however, this antimicrobial protein occurs in the cytoplasm of keratinocytes.


Blood | 2015

Targeting casein kinase II restores Ikaros tumor suppressor activity and demonstrates therapeutic efficacy in high-risk leukemia

Chunhua Song; Chandrika Gowda; Xiaokang Pan; Yali Ding; Yongqing Tong; Bi-Hua Tan; Haijun Wang; Sunil Muthusami; Zheng Ge; Mansi Sachdev; Shantu Amin; Dhimant Desai; Krishne Gowda; Raghavendra Gowda; Gavin P. Robertson; Hilde Schjerven; Markus Müschen; Kimberly J. Payne; Sinisa Dovat

Ikaros (IKZF1) is a tumor suppressor that binds DNA and regulates expression of its target genes. The mechanism of Ikaros activity as a tumor suppressor and the regulation of Ikaros function in leukemia are unknown. Here, we demonstrate that Ikaros controls cellular proliferation by repressing expression of genes that promote cell cycle progression and the phosphatidylinositol-3 kinase (PI3K) pathway. We show that Ikaros function is impaired by the pro-oncogenic casein kinase II (CK2), and that CK2 is overexpressed in leukemia. CK2 inhibition restores Ikaros function as transcriptional repressor of cell cycle and PI3K pathway genes, resulting in an antileukemia effect. In high-risk leukemia where one IKZF1 allele has been deleted, CK2 inhibition restores the transcriptional repressor function of the remaining wild-type IKZF1 allele. CK2 inhibition demonstrated a potent therapeutic effect in a panel of patient-derived primary high-risk B-cell acute lymphoblastic leukemia xenografts as indicated by prolonged survival and a reduction of leukemia burden. We demonstrate the efficacy of a novel therapeutic approach for high-risk leukemia: restoration of Ikaros tumor suppressor activity via inhibition of CK2. These results provide a rationale for the use of CK2 inhibitors in clinical trials for high-risk leukemia, including cases with deletion of one IKZF1 allele.


Journal of Immunology | 2004

De Novo Synthesized RelB Mediates TNF-Induced Up-Regulation of the Human Polymeric Ig Receptor

Hilde Schjerven; Thien N. Tran; Per Brandtzaeg; Finn-Eirik Johansen

Secretory Abs, which operate in a principally noninflammatory fashion, constitute the first line of acquired immune defense of mucosal surfaces. Such Abs are generated by polymeric Ig receptor (pIgR)-mediated export of dimeric IgA and pentameric IgM. TNF activates a proinflammatory gene repertoire in mucosal epithelial cells and also enhances pIgR expression. In this study we show that TNF-induced up-regulation of the human pIgR critically depends on an NF-κB site and flanking sequences within a 204-bp region of the first intron in the pIgR gene, a region largely overlapping with a recently characterized IL-4-responsive enhancer. The intronic NF-κB site was rapidly bound by NF-κB p65/p50 heterodimers present in nuclear extracts after TNF treatment of HT-29 cells, but a more delayed binding of RelB agreed better with the slow, protein synthesis-dependent, transcriptional activation of the pIgR gene. Overexpression of NF-κB p65 caused transient up-regulation of a pIgR-derived reporter gene, whereas overexpression of RelB showed a stronger and more sustained effect. Finally, we demonstrated that inhibition of endogenous RelB by RNA interference severely reduced the TNF responsiveness of our pIgR-derived reporter gene. Thus, TNF-induced signaling pathways required for up-regulated pIgR expression appear to differ from those of the proinflammatory gene repertoire.


Nature | 2017

Metabolic gatekeeper function of B-lymphoid transcription factors

Lai N. Chan; Zhengshan Chen; Daniel Braas; Jae-Woong Lee; Gang Xiao; Huimin Geng; Kadriye Nehir Cosgun; Christian Hurtz; Seyedmehdi Shojaee; Valeria Cazzaniga; Hilde Schjerven; Thomas Ernst; Andreas Hochhaus; Steven M. Kornblau; Marina Konopleva; Miles A. Pufall; Giovanni Cazzaniga; Grace J. Liu; Thomas A. Milne; H. Phillip Koeffler; Theodora S. Ross; Isidro Sánchez-García; Arndt Borkhardt; Keith R. Yamamoto; Ross A. Dickins; Thomas G. Graeber; Markus Müschen

B-lymphoid transcription factors, such as PAX5 and IKZF1, are critical for early B-cell development, yet lesions of the genes encoding these transcription factors occur in over 80% of cases of pre-B-cell acute lymphoblastic leukaemia (ALL). The importance of these lesions in ALL has, until now, remained unclear. Here, by combining studies using chromatin immunoprecipitation with sequencing and RNA sequencing, we identify a novel B-lymphoid program for transcriptional repression of glucose and energy supply. Our metabolic analyses revealed that PAX5 and IKZF1 enforce a state of chronic energy deprivation, resulting in constitutive activation of the energy-stress sensor AMPK. Dominant-negative mutants of PAX5 and IKZF1, however, relieved this glucose and energy restriction. In a transgenic pre-B ALL mouse model, the heterozygous deletion of Pax5 increased glucose uptake and ATP levels by more than 25-fold. Reconstitution of PAX5 and IKZF1 in samples from patients with pre-B ALL restored a non-permissive state and induced energy crisis and cell death. A CRISPR/Cas9-based screen of PAX5 and IKZF1 transcriptional targets identified the products of NR3C1 (encoding the glucocorticoid receptor), TXNIP (encoding a glucose-feedback sensor) and CNR2 (encoding a cannabinoid receptor) as central effectors of B-lymphoid restriction of glucose and energy supply. Notably, transport-independent lipophilic methyl-conjugates of pyruvate and tricarboxylic acid cycle metabolites bypassed the gatekeeper function of PAX5 and IKZF1 and readily enabled leukaemic transformation. Conversely, pharmacological TXNIP and CNR2 agonists and a small-molecule AMPK inhibitor strongly synergized with glucocorticoids, identifying TXNIP, CNR2 and AMPK as potential therapeutic targets. Furthermore, our results provide a mechanistic explanation for the empirical finding that glucocorticoids are effective in the treatment of B-lymphoid but not myeloid malignancies. Thus, B-lymphoid transcription factors function as metabolic gatekeepers by limiting the amount of cellular ATP to levels that are insufficient for malignant transformation.


Journal of Immunology | 2003

Hepatocyte NF-1 and STAT6 cooperate with additional DNA-binding factors to activate transcription of the human polymeric Ig receptor gene in response to IL-4.

Hilde Schjerven; Per Brandtzaeg; Finn-Eirik Johansen

Secretory IgA and IgM, which protect the mucosal surfaces, are generated by selective transport of locally produced polymeric (p)Igs through the epithelial barrier by the pIgR. The expression of this receptor, and hence the generation of secretory Igs, is modulated by numerous extracellular factors. We have previously identified a STAT6 site in intron 1 of the human pIgR gene that is required for the slow and de novo protein synthesis-dependent IL-4-mediated transcriptional activation of the gene. In this study, we show that this intronic IL-4-responsive enhancer is confined to a 250-bp region that is highly conserved in the murine pIgR gene. The enhancer was dependent on the cooperation between the STAT6 site and at least four additional DNA elements. EMSA experiments demonstrated binding by hepatocyte NF-1 to one of these DNA elements. Extensive overlap in the tissue distribution of hepatocyte NF-1 and pIgR suggests that this transcription factor contributes to tissue-specific pIgR expression. Changing the helical phase between the STAT6 site and downstream DNA elements greatly reduced the strength of the IL-4 response, suggesting that the precise organization of this enhancer is important for its proper function. Thus, several transcription factors cooperate in this enhanceosome to mediate IL-4 responsiveness in HT-29 epithelial cells.

Collaboration


Dive into the Hilde Schjerven's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huimin Geng

University of California

View shared research outputs
Top Co-Authors

Avatar

Seth Frietze

University of California

View shared research outputs
Top Co-Authors

Avatar

Steven M. Kornblau

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Zhou

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Zhengshan Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Aileen Lee

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge