Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huimin Geng is active.

Publication


Featured researches published by Huimin Geng.


Blood | 2010

Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma.

Javeed Iqbal; Dennis D. Weisenburger; Timothy C. Greiner; Julie M. Vose; Timothy W. McKeithan; Can Kucuk; Huimin Geng; Karen E. Deffenbacher; Lynette M. Smith; Karen Dybkær; Shigeo Nakamura; Masao Seto; Jan Delabie; Françoise Berger; Florence Loong; Wing Y. Au; Young Hyeh Ko; Ivy Sng; James O. Armitage; Wing C. Chan

Peripheral T-cell lymphoma (PTCL) is often challenging to diagnose and classify. Gene expression profiling was performed on 144 cases of PTCL and natural killer cell lymphoma and robust molecular classifiers were constructed for angioimmunoblastic T-cell lymphoma (AITL), anaplastic lymphoma kinase-positive (ALK(+)) anaplastic large-cell lymphoma (ALCL), and adult T-cell leukemia/lymphoma. PTCL-unclassifiable was molecularly heterogeneous, but we were able to identify a molecular subgroup with features of cytotoxic T lymphocytes and a poor survival compared with the remaining PTCL-not otherwise specified cases. Many of the pathologic features and substantial components of the molecular signature of AITL are contributed by the follicular dendritic cells, B-cell, and other stromal components. The expression of Th17-associated molecules in ALK(+) ALCL was noted and may represent aberrant activation of Th17-cell differentiation by abnormal cytokine secretion. Adult T-cell leukemia/lymphoma has a homogeneous molecular signature demonstrating high expression of human T-lymphotropic virus type 1-induced genes. These classifiers reflect the biology of the tumor cells as well as their microenvironment. We also constructed a molecular prognosticator for AITL that appears to be largely related to the microenvironmental signature, and the high expression of 2 immunosuppressive signatures are associated with poor outcome. Oncogenic pathways and tumor-host interactions also were identified, and these findings may lead to better therapies and outcome in the future.


Nature Immunology | 2015

TET1 is a tumor suppressor of hematopoietic malignancy

Luisa Cimmino; Meelad M. Dawlaty; Delphine Ndiaye-Lobry; Yoon Sing Yap; Sofia Bakogianni; Yiting Yu; Sanchari Bhattacharyya; Rita Shaknovich; Huimin Geng; Camille Lobry; Jasper Mullenders; Bryan King; Thomas Trimarchi; Beatriz Aranda-Orgilles; Cynthia Liu; Steven Shen; Amit Verma; Rudolf Jaenisch; Iannis Aifantis

The methylcytosine dioxygenase TET1 (‘ten-eleven translocation 1’) is an important regulator of 5-hydroxymethylcytosine (5hmC) in embryonic stem cells. The diminished expression of TET proteins and loss of 5hmC in many tumors suggests a critical role for the maintenance of this epigenetic modification. Here we found that deletion of Tet1 promoted the development of B cell lymphoma in mice. TET1 was required for maintenance of the normal abundance and distribution of 5hmC, which prevented hypermethylation of DNA, and for regulation of the B cell lineage and of genes encoding molecules involved in chromosome maintenance and DNA repair. Whole-exome sequencing of TET1-deficient tumors revealed mutations frequently found in non-Hodgkin B cell lymphoma (B-NHL), in which TET1 was hypermethylated and transcriptionally silenced. Our findings provide in vivo evidence of a function for TET1 as a tumor suppressor of hematopoietic malignancy.


Nature Immunology | 2015

Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia

Srividya Swaminathan; Lars Klemm; Eugene Park; Elli Papaemmanuil; Anthony M. Ford; Soo-Mi Kweon; Daniel Trageser; Brian Hasselfeld; Nadine Henke; Jana Mooster; Huimin Geng; Klaus Schwarz; Scott C. Kogan; Rafael Casellas; David G. Schatz; Michael R. Lieber; Mel Greaves; Markus Müschen

Childhood acute lymphoblastic leukemia (ALL) can often be traced to a pre-leukemic clone carrying a prenatal genetic lesion. Postnatally acquired mutations then drive clonal evolution toward overt leukemia. The enzymes RAG1-RAG2 and AID, which diversify immunoglobulin-encoding genes, are strictly segregated in developing cells during B lymphopoiesis and peripheral mature B cells, respectively. Here we identified small pre-BII cells as a natural subset with increased genetic vulnerability owing to concurrent activation of these enzymes. Consistent with epidemiological findings on childhood ALL etiology, susceptibility to genetic lesions during B lymphopoiesis at the transition from the large pre-BII cell stage to the small pre-BII cell stage was exacerbated by abnormal cytokine signaling and repetitive inflammatory stimuli. We demonstrated that AID and RAG1-RAG2 drove leukemic clonal evolution with repeated exposure to inflammatory stimuli, paralleling chronic infections in childhood.


Cell Reports | 2013

RUNX1 Is a Key Target in t(4;11) Leukemias that Contributes to Gene Activation through an AF4-MLL Complex Interaction

Adam C. Wilkinson; Erica Ballabio; Huimin Geng; Phillip S. North; Marta Tapia; Jon Kerry; Debabrata Biswas; Robert G. Roeder; C. David Allis; Ari Melnick; Marella de Bruijn; Thomas A. Milne

Summary The Mixed Lineage Leukemia (MLL) protein is an important epigenetic regulator required for the maintenance of gene activation during development. MLL chromosomal translocations produce novel fusion proteins that cause aggressive leukemias in humans. Individual MLL fusion proteins have distinct leukemic phenotypes even when expressed in the same cell type, but how this distinction is delineated on a molecular level is poorly understood. Here, we highlight a unique molecular mechanism whereby the RUNX1 gene is directly activated by MLL-AF4 and the RUNX1 protein interacts with the product of the reciprocal AF4-MLL translocation. These results support a mechanism of transformation whereby two oncogenic fusion proteins cooperate by activating a target gene and then modulating the function of its downstream product.


Nature | 2015

Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia.

Zhengshan Chen; Seyedmehdi Shojaee; Maike Buchner; Huimin Geng; Jae-Woong Lee; Lars Klemm; Björn Titz; Thomas G. Graeber; Eugene Park; Ying Xim Tan; Anne B. Satterthwaite; Elisabeth Paietta; Stephen P. Hunger; Cheryl L. Willman; Ari Melnick; Mignon L. Loh; Jae U. Jung; John E. Coligan; Silvia Bolland; Tak W. Mak; Andre Limnander; Hassan Jumaa; Michael Reth; Arthur Weiss; Clifford A. Lowell; Markus Müschen

B cells are selected for an intermediate level of B-cell antigen receptor (BCR) signalling strength: attenuation below minimum (for example, non-functional BCR) or hyperactivation above maximum (for example, self-reactive BCR) thresholds of signalling strength causes negative selection. In ∼25% of cases, acute lymphoblastic leukaemia (ALL) cells carry the oncogenic BCR-ABL1 tyrosine kinase (Philadelphia chromosome positive), which mimics constitutively active pre-BCR signalling. Current therapeutic approaches are largely focused on the development of more potent tyrosine kinase inhibitors to suppress oncogenic signalling below a minimum threshold for survival. We tested the hypothesis that targeted hyperactivation—above a maximum threshold—will engage a deletional checkpoint for removal of self-reactive B cells and selectively kill ALL cells. Here we find, by testing various components of proximal pre-BCR signalling in mouse BCR–ABL1 cells, that an incremental increase of Syk tyrosine kinase activity was required and sufficient to induce cell death. Hyperactive Syk was functionally equivalent to acute activation of a self-reactive BCR on ALL cells. Despite oncogenic transformation, this basic mechanism of negative selection was still functional in ALL cells. Unlike normal pre-B cells, patient-derived ALL cells express the inhibitory receptors PECAM1, CD300A and LAIR1 at high levels. Genetic studies revealed that Pecam1, Cd300a and Lair1 are critical to calibrate oncogenic signalling strength through recruitment of the inhibitory phosphatases Ptpn6 (ref. 7) and Inpp5d (ref. 8). Using a novel small-molecule inhibitor of INPP5D (also known as SHIP1), we demonstrated that pharmacological hyperactivation of SYK and engagement of negative B-cell selection represents a promising new strategy to overcome drug resistance in human ALL.


Blood | 2013

Imatinib disrupts lymphoma angiogenesis by targeting vascular pericytes

Jia Ruan; Min Luo; Chunjie Wang; Lei Fan; Shao Ning Yang; Mariano G. Cardenas; Huimin Geng; John P. Leonard; Ari Melnick; Leandro Cerchietti; Katherine A. Hajjar

Pericytes and vascular smooth muscle cells (VSMCs), which are recruited to developing blood vessels by platelet-derived growth factor BB, support endothelial cell survival and vascular stability. Here, we report that imatinib, a tyrosine kinase inhibitor of platelet-derived growth factor receptor β (PDGFRβ), impaired growth of lymphoma in both human xenograft and murine allograft models. Lymphoma cells themselves neither expressed PDGFRβ nor were growth inhibited by imatinib. Tumor growth inhibition was associated with decreased microvascular density and increased vascular leakage. In vivo, imatinib induced apoptosis of tumor-associated PDGFRβ(+) pericytes and loss of perivascular integrity. In vitro, imatinib inhibited PDGFRβ(+) VSMC proliferation and PDGF-BB signaling, whereas small interfering RNA knockdown of PDGFRβ in pericytes protected them against imatinib-mediated growth inhibition. Fluorescence-activated cell sorter analysis of tumor tissue revealed depletion of pericytes, endothelial cells, and their progenitors following imatinib treatment. Compared with imatinib, treatment with an anti-PDGFRβ monoclonal antibody partially inhibited lymphoma growth. Last, microarray analysis (Gene Expression Omnibus database accession number GSE30752) of PDGFRβ(+) VSMCs following imatinib treatment showed down-regulation of genes implicated in vascular cell proliferation, survival, and assembly, including those representing multiple pathways downstream of PDGFRβ. Taken together, these data indicate that PDGFRβ(+) pericytes may represent a novel, nonendothelial, antiangiogenic target for lymphoma therapy.


Blood | 2013

Integrin alpha4 blockade sensitizes drug resistant pre-B acute lymphoblastic leukemia to chemotherapy

Yao-Te Hsieh; EunJi Gang; Huimin Geng; Eugene Park; Sandra Huantes; Doreen Chudziak; Katrin Dauber; Schaefer P; Carlton Scharman; Hiroyuki Shimada; Seyedmehdi Shojaee; Lars Klemm; Reshmi Parameswaran; Mignon L. Loh; Eun Suk Kang; Hong Hoe Koo; Wolf-Karsten Hofmann; Andrade J; Crooks Gm; Cheryl L. Willman; Markus Müschen; T Papayannopoulou; Nora Heisterkamp; Halvard Bonig; Yong Mi Kim

Bone marrow (BM) provides chemoprotection for acute lymphoblastic leukemia (ALL) cells, contributing to lack of efficacy of current therapies. Integrin alpha4 (alpha4) mediates stromal adhesion of normal and malignant B-cell precursors, and according to gene expression analyses from 207 children with minimal residual disease, is highly associated with poorest outcome. We tested whether interference with alpha4-mediated stromal adhesion might be a new ALL treatment. Two models of leukemia were used, one genetic (conditional alpha4 ablation of BCR-ABL1 [p210(+)] leukemia) and one pharmacological (anti-functional alpha4 antibody treatment of primary ALL). Conditional deletion of alpha4 sensitized leukemia cell to nilotinib. Adhesion of primary pre-B ALL cells was alpha4-dependent; alpha4 blockade sensitized primary ALL cells toward chemotherapy. Chemotherapy combined with Natalizumab prolonged survival of NOD/SCID recipients of primary ALL, suggesting adjuvant alpha4 inhibition as a novel strategy for pre-B ALL.


Cancer Cell | 2015

Self-Enforcing Feedback Activation between BCL6 and Pre-B Cell Receptor Signaling Defines a Distinct Subtype of Acute Lymphoblastic Leukemia

Huimin Geng; Christian Hurtz; Kyle Lenz; Zhengshan Chen; Dirk Baumjohann; Sarah K. Thompson; Natalya A. Goloviznina; Wei Yi Chen; Jianya Huan; Dorian LaTocha; Erica Ballabio; Gang Xiao; Jae-Woong Lee; Anne Deucher; Zhongxia Qi; Eugene Park; Chuanxin Huang; Rahul Nahar; Soo Mi Kweon; Seyedmehdi Shojaee; Lai N. Chan; Jingwei Yu; Steven M. Kornblau; Janetta Jacoba Bijl; B. Hilda Ye; K. Mark Ansel; Elisabeth Paietta; Ari Melnick; Stephen P. Hunger; Peter Kurre

Studying 830 pre-B ALL cases from four clinical trials, we found that human ALL can be divided into two fundamentally distinct subtypes based on pre-BCR function. While absent in the majority of ALL cases, tonic pre-BCR signaling was found in 112 cases (13.5%). In these cases, tonic pre-BCR signaling induced activation of BCL6, which in turn increased pre-BCR signaling output at the transcriptional level. Interestingly, inhibition of pre-BCR-related tyrosine kinases reduced constitutive BCL6 expression and selectively killed patient-derived pre-BCR(+) ALL cells. These findings identify a genetically and phenotypically distinct subset of human ALL that critically depends on tonic pre-BCR signaling. In vivo treatment studies suggested that pre-BCR tyrosine kinase inhibitors are useful for the treatment of patients with pre-BCR(+) ALL.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia

Behzad Kharabi Masouleh; Huimin Geng; Christian Hurtz; Lai N. Chan; Aaron C Logan; Mi Sook Chang; Chuanxin Huang; Srividya Swaminathan; Haibo Sun; Elisabeth Paietta; Ari Melnick; Phillip Koeffler; Markus Müschen

Significance The unfolded protein response (UPR) mitigates endoplasmic reticulum (ER) stress. In this regard, ER stress-inducing agents were found to be highly active in a clinical trial for children with relapsed acute lymphoblastic leukemia (ALL), a disease derived from transformed pre-B cells. To understand the efficacy of ER stress-inducing agents in pre-B ALL, we studied the relevance of the UPR pathway in genetic and patient-derived (xenograft) models of human pre-B ALL. Our studies revealed an unrecognized vulnerability of both normal pre-B cells and pre-B cell-derived ALL cells to genetic or pharmacological blockade of the UPR pathway. Our results establish a mechanistic rationale for the treatment of children with pre-B ALL with agents that block the UPR pathway and induce ER stress. The unfolded protein response (UPR) pathway, a stress-induced signaling cascade emanating from the endoplasmic reticulum (ER), regulates the expression and activity of molecules including BiP (HSPA5), IRE1 (ERN1), Blimp-1 (PRDM1), and X-box binding protein 1 (XBP1). These molecules are required for terminal differentiation of B cells into plasma cells and expressed at high levels in plasma cell-derived multiple myeloma. Although these molecules have no known role at early stages of B-cell development, here we show that their expression transiently peaks at the pre–B-cell receptor checkpoint. Inducible, Cre-mediated deletion of Hspa5, Prdm1, and Xbp1 consistently induces cellular stress and cell death in normal pre-B cells and in pre–B-cell acute lymphoblastic leukemia (ALL) driven by BCR-ABL1- and NRASG12D oncogenes. Mechanistically, expression and activity of the UPR downstream effector XBP1 is regulated positively by STAT5 and negatively by the B-cell–specific transcriptional repressors BACH2 and BCL6. In two clinical trials for children and adults with ALL, high XBP1 mRNA levels at the time of diagnosis predicted poor outcome. A small molecule inhibitor of ERN1-mediated XBP1 activation induced selective cell death of patient-derived pre-B ALL cells in vitro and significantly prolonged survival of transplant recipient mice in vivo. Collectively, these studies reveal that pre-B ALL cells are uniquely vulnerable to ER stress and identify the UPR pathway and its downstream effector XBP1 as novel therapeutic targets to overcome drug resistance in pre-B ALL.


Cancer Discovery | 2017

CREBBP Inactivation Promotes the Development of HDAC3-Dependent Lymphomas

Yanwen Jiang; Ana Ortega-Molina; Huimin Geng; Hsia-Yuan Ying; Katerina Hatzi; Sara Parsa; Dylan McNally; Ling Wang; Ashley S. Doane; Xabier Agirre; Matt Teater; Cem Meydan; Zhuoning Li; David W. Poloway; Shenqiu Wang; Daisuke Ennishi; David W. Scott; Kristy R. Stengel; Janice E. Kranz; Edward B. Holson; Sneh Sharma; James W. Young; Chi-Shuen Chu; Robert G. Roeder; Rita Shaknovich; Scott W. Hiebert; Randy D. Gascoyne; Wayne Tam; Olivier Elemento; Hans-Guido Wendel

Somatic mutations in CREBBP occur frequently in B-cell lymphoma. Here, we show that loss of CREBBP facilitates the development of germinal center (GC)-derived lymphomas in mice. In both human and murine lymphomas, CREBBP loss-of-function resulted in focal depletion of enhancer H3K27 acetylation and aberrant transcriptional silencing of genes that regulate B-cell signaling and immune responses, including class II MHC. Mechanistically, CREBBP-regulated enhancers are counter-regulated by the BCL6 transcriptional repressor in a complex with SMRT and HDAC3, which we found to bind extensively to MHC class II loci. HDAC3 loss-of-function rescued repression of these enhancers and corresponding genes, including MHC class II, and more profoundly suppressed CREBBP-mutant lymphomas in vitro and in vivo Hence, CREBBP loss-of-function contributes to lymphomagenesis by enabling unopposed suppression of enhancers by BCL6/SMRT/HDAC3 complexes, suggesting HDAC3-targeted therapy as a precision approach for CREBBP-mutant lymphomas. SIGNIFICANCE Our findings establish the tumor suppressor function of CREBBP in GC lymphomas in which CREBBP mutations disable acetylation and result in unopposed deacetylation by BCL6/SMRT/HDAC3 complexes at enhancers of B-cell signaling and immune response genes. Hence, inhibition of HDAC3 can restore the enhancer histone acetylation and may serve as a targeted therapy for CREBBP-mutant lymphomas. Cancer Discov; 7(1); 38-53. ©2016 AACR.See related commentary by Höpken, p. 14This article is highlighted in the In This Issue feature, p. 1.

Collaboration


Dive into the Huimin Geng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhengshan Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Lai N. Chan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Klemm

University of California

View shared research outputs
Top Co-Authors

Avatar

Jae-Woong Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

Maike Buchner

University of California

View shared research outputs
Top Co-Authors

Avatar

Eugene Park

University of California

View shared research outputs
Top Co-Authors

Avatar

Gang Xiao

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge