Hilton Takahashi
Université catholique de Louvain
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hilton Takahashi.
Biochemical Journal | 2012
Leticia Prates Roma; Jessica Duprez; Hilton Takahashi; Patrick Gilon; Andreas Wiederkehr; Jean-Christophe Jonas
Using the ROS (reactive oxygen species)-sensitive fluorescent dyes dichlorodihydrofluorescein and dihydroethidine, previous studies yielded opposite results about the glucose regulation of oxidative stress in insulin-secreting pancreatic β-cells. In the present paper, we used the ratiometric fluorescent proteins HyPer and roGFP1 (redox-sensitive green fluorescent protein 1) targeted to mitochondria [mt-HyPer (mitochondrial HyPer)/mt-roGFP1 (mitochondrial roGFP1)] to monitor glucose-induced changes in mitochondrial hydrogen peroxide concentration and glutathione redox state in adenovirus-infected rat islet cell clusters. Because of the reported pH sensitivity of HyPer, the results were compared with those obtained with the mitochondrial pH sensors mt-AlpHi and mt-SypHer. The fluorescence ratio of the mitochondrial probes slowly decreased (mt-HyPer) or increased (mt-roGFP1) in the presence of 10 mmol/l glucose. Besides its expected sensitivity to H2O2, mt-HyPer was also highly pH sensitive. In agreement, changes in mitochondrial metabolism similarly affected mt-HyPer, mt-AlpHi and mt-SypHer fluorescence signals. In contrast, the mt-roGFP1 fluorescence ratio was only slightly affected by pH and reversibly increased when glucose was lowered from 10 to 2 mmol/l. This increase was abrogated by the catalytic antioxidant Mn(III) tetrakis (4-benzoic acid) porphyrin but not by N-acetyl-L-cysteine. In conclusion, due to its pH sensitivity, mt-HyPer is not a reliable indicator of mitochondrial H2O2 in β-cells. In contrast, the mt-roGFP1 fluorescence ratio monitors changes in β-cell mitochondrial glutathione redox state with little interference from pH changes. Our results also show that glucose acutely decreases rather than increases mitochondrial thiol oxidation in rat β-cells.
Biochemical Journal | 2014
Hilton Takahashi; Laila R.B. Santos; Leticia Prates Roma; Jessica Duprez; Christophe Broca; Anne Wojtusciszyn; Jean-Christophe Jonas
The glucose stimulation of insulin secretion by pancreatic β-cells depends on increased production of metabolic coupling factors, among which changes in NADPH and ROS (reactive oxygen species) may alter the glutathione redox state (EGSH) and signal through changes in thiol oxidation. However, whether nutrients affect EGSH in β-cell subcellular compartments is unknown. Using redox-sensitive GFP2 fused to glutaredoxin 1 and its mitochondria-targeted form, we studied the acute nutrient regulation of EGSH in the cytosol/nucleus or the mitochondrial matrix of rat islet cells. These probes were mainly expressed in β-cells and reacted to low concentrations of exogenous H2O2 and menadione. Under control conditions, cytosolic/nuclear EGSH was close to -300 mV and unaffected by glucose (from 0 to 30 mM). In comparison, mitochondrial EGSH was less negative and rapidly regulated by glucose and other nutrients, ranging from -280 mV in the absence of glucose to -299 mV in 30 mM glucose. These changes were largely independent from changes in intracellular Ca(2+) concentration and in mitochondrial pH. They were unaffected by overexpression of SOD2 (superoxide dismutase 2) and mitochondria-targeted catalase, but were inversely correlated with changes in NAD(P)H autofluorescence, suggesting that they indirectly resulted from increased NADPH availability rather than from changes in ROS concentration. Interestingly, the opposite regulation of mitochondrial EGSH and NAD(P)H autofluorescence by glucose was also observed in human islets isolated from two donors. In conclusion, the present study demonstrates that glucose and other nutrients acutely reduce mitochondrial, but not cytosolic/nuclear, EGSH in pancreatic β-cells under control conditions.
Molecular metabolism | 2017
Laila R.B. Santos; Carole Muller; Arnaldo H. de Souza; Hilton Takahashi; Peter Spégel; Ian R. Sweet; Heeyoung Chae; Hindrik Mulder; Jean-Christophe Jonas
Objective The glucose stimulation of insulin secretion (GSIS) by pancreatic β-cells critically depends on increased production of metabolic coupling factors, including NADPH. Nicotinamide nucleotide transhydrogenase (NNT) typically produces NADPH at the expense of NADH and ΔpH in energized mitochondria. Its spontaneous inactivation in C57BL/6J mice was previously shown to alter ATP production, Ca2+ influx, and GSIS, thereby leading to glucose intolerance. Here, we tested the role of NNT in the glucose regulation of mitochondrial NADPH and glutathione redox state and reinvestigated its role in GSIS coupling events in mouse pancreatic islets. Methods Islets were isolated from female C57BL/6J mice (J-islets), which lack functional NNT, and genetically close C57BL/6N mice (N-islets). Wild-type mouse NNT was expressed in J-islets by adenoviral infection. Mitochondrial and cytosolic glutathione oxidation was measured with glutaredoxin 1-fused roGFP2 probes targeted or not to the mitochondrial matrix. NADPH and NADH redox state was measured biochemically. Insulin secretion and upstream coupling events were measured under dynamic or static conditions by standard procedures. Results NNT is largely responsible for the acute glucose-induced rise in islet NADPH/NADP+ ratio and decrease in mitochondrial glutathione oxidation, with a small impact on cytosolic glutathione. However, contrary to current views on NNT in β-cells, these effects resulted from a glucose-dependent reduction in NADPH consumption by NNT reverse mode of operation, rather than from a stimulation of its forward mode of operation. Accordingly, the lack of NNT in J-islets decreased their sensitivity to exogenous H2O2 at non-stimulating glucose. Surprisingly, the lack of NNT did not alter the glucose-stimulation of Ca2+ influx and upstream mitochondrial events, but it markedly reduced both phases of GSIS by altering Ca2+-induced exocytosis and its metabolic amplification. Conclusion These results drastically modify current views on NNT operation and mitochondrial function in pancreatic β-cells.
Diabetes | 2016
Laila Rb Santos; Carole Muller; Arnaldo H. Souza; Hilton Takahashi; Jean-Christophe Jonas
Archive | 2015
Hilton Takahashi; Leticia Prates Roma; Mauricio da Silva
Diabetes & Metabolism | 2015
Laila Rb Santos; Arnaldo H. de Souza; Carole Muller; Hilton Takahashi; Jean-Christophe Jonas
Diabetes & Metabolism | 2015
Carole Muller; Laila Rb Santos; Hilton Takahashi; A.H. ouza; J.C. Jonas
51st Annual Meeting of the European Association for the Study of Diabetes | 2015
Laila R.B. Santos; Carole Muller; Arnaldo H. Souza; Hilton Takahashi; Jean-Christophe Jonas
EASD Islet Study Group 2014 "Pancreatic Islet Cels Plasticity in Health and Diabetes" | 2014
Jean-Christophe Jonas; Arnaldo H. Souza; Laila R.B. Santos; Hilton Takahashi
EASD Islet Study Group 2014 "Pancreatic Islet Cells Plasticity in Health and Diabetes" | 2014
Laila R.B. Santos; Hilton Takahashi; Arnaldo H. Souza; Jean-Christophe Jonas