Jessica Duprez
Université catholique de Louvain
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jessica Duprez.
Diabetes, Obesity and Metabolism | 2009
Jean-Christophe Jonas; Mohammed Bensellam; Jessica Duprez; Hajar Elouil; Yves Guiot; Séverine Pascal
Pancreatic β‐cells exposed to high glucose concentrations display altered gene expression, function, survival and growth that may contribute to the slow deterioration of the functional β‐cell mass in type 2 diabetes. These glucotoxic alterations may result from various types of stress imposed by the hyperglycaemic environment, including oxidative stress, endoplasmic reticulum stress, cytokine‐induced apoptosis and hypoxia. The glucose regulation of oxidative stress‐response and integrated stress‐response genes in cultured rat islets follows an asymmetric V‐shaped profile parallel to that of β‐cell apoptosis, with a large increase at low glucose and a moderate increase at high vs. intermediate glucose concentrations. These observations suggest that both types of stress could play a role in the alteration of the functional β‐cell mass under states of prolonged hypoglycaemia and hyperglycaemia. In addition, β‐cell demise under glucotoxic conditions may also result from β‐cell hypoxia and, in vivo, from their exposure to inflammatory cytokines released locally by non‐endocrine islet cells. A better understanding of the relative contribution of each type of stress to β‐cell glucotoxicity and of their pathophysiological cause in vivo may lead to new therapeutic strategies to prevent the slow deterioration of the functional β‐cell mass in glucose intolerant and type 2 diabetic patients.
Biochemical Journal | 2012
Leticia Prates Roma; Jessica Duprez; Hilton Takahashi; Patrick Gilon; Andreas Wiederkehr; Jean-Christophe Jonas
Using the ROS (reactive oxygen species)-sensitive fluorescent dyes dichlorodihydrofluorescein and dihydroethidine, previous studies yielded opposite results about the glucose regulation of oxidative stress in insulin-secreting pancreatic β-cells. In the present paper, we used the ratiometric fluorescent proteins HyPer and roGFP1 (redox-sensitive green fluorescent protein 1) targeted to mitochondria [mt-HyPer (mitochondrial HyPer)/mt-roGFP1 (mitochondrial roGFP1)] to monitor glucose-induced changes in mitochondrial hydrogen peroxide concentration and glutathione redox state in adenovirus-infected rat islet cell clusters. Because of the reported pH sensitivity of HyPer, the results were compared with those obtained with the mitochondrial pH sensors mt-AlpHi and mt-SypHer. The fluorescence ratio of the mitochondrial probes slowly decreased (mt-HyPer) or increased (mt-roGFP1) in the presence of 10 mmol/l glucose. Besides its expected sensitivity to H2O2, mt-HyPer was also highly pH sensitive. In agreement, changes in mitochondrial metabolism similarly affected mt-HyPer, mt-AlpHi and mt-SypHer fluorescence signals. In contrast, the mt-roGFP1 fluorescence ratio was only slightly affected by pH and reversibly increased when glucose was lowered from 10 to 2 mmol/l. This increase was abrogated by the catalytic antioxidant Mn(III) tetrakis (4-benzoic acid) porphyrin but not by N-acetyl-L-cysteine. In conclusion, due to its pH sensitivity, mt-HyPer is not a reliable indicator of mitochondrial H2O2 in β-cells. In contrast, the mt-roGFP1 fluorescence ratio monitors changes in β-cell mitochondrial glutathione redox state with little interference from pH changes. Our results also show that glucose acutely decreases rather than increases mitochondrial thiol oxidation in rat β-cells.
Diabetes | 2012
Jannick Pétremand; Julien Puyal; Jean-Yves Chatton; Jessica Duprez; Florent Allagnat; Miguel Frias; Richard James; Gérard Waeber; Jean-Christophe Jonas; Christian Widmann
Endoplasmic reticulum (ER) homeostasis alteration contributes to pancreatic β-cell dysfunction and death and favors the development of diabetes. In this study, we demonstrate that HDLs protect β-cells against ER stress induced by thapsigargin, cyclopiazonic acid, palmitate, insulin overexpression, and high glucose concentrations. ER stress marker induction and ER morphology disruption mediated by these stimuli were inhibited by HDLs. Using a temperature-sensitive viral glycoprotein folding mutant, we show that HDLs correct impaired protein trafficking and folding induced by thapsigargin and palmitate. The ability of HDLs to protect β-cells against ER stress was inhibited by brefeldin A, an ER to Golgi trafficking blocker. These results indicate that HDLs restore ER homeostasis in response to ER stress, which is required for their ability to promote β-cell survival. This study identifies a cellular mechanism mediating the beneficial effect of HDLs on β-cells against ER stress-inducing factors.
PLOS ONE | 2012
Jessica Duprez; Leticia Prates Roma; Anne-Françoise Close; Jean-Christophe Jonas
Aim/Hypothesis Rat pancreatic islet cell apoptosis is minimal after prolonged culture in 10 mmol/l glucose (G10), largely increased in 5 mmol/l glucose (G5) and moderately increased in 30 mmol/l glucose (G30). This glucose-dependent asymmetric V-shaped profile is preceded by parallel changes in the mRNA levels of oxidative stress-response genes like Metallothionein 1a (Mt1a). In this study, we tested the effect of ZnCl2, a potent inducer of Mt1a, on apoptosis, mitochondrial oxidative stress and alterations of glucose-induced insulin secretion (GSIS) induced by prolonged exposure to low and high vs. intermediate glucose concentrations. Methods Male Wistar rat islets were cultured in RPMI medium. Islet gene mRNA levels were measured by RTq-PCR. Apoptosis was quantified by measuring islet cytosolic histone-associated DNA fragments and the percentage of TUNEL-positive β-cells. Mitochondrial thiol oxidation was measured in rat islet cell clusters expressing “redox sensitive GFP” targeted to the mitochondria (mt-roGFP1). Insulin secretion was measured by RIA. Results As observed for Mt1a mRNA levels, β-cell apoptosis and loss of GSIS, culture in either G5 or G30 vs. G10 significantly increased mt-roGFP1 oxidation. While TPEN decreased Mt1a/2a mRNA induction by G5, addition of 50–100 µM ZnCl2 to the culture medium strongly increased Mt1a/2a mRNA and protein levels, reduced early mt-roGFP oxidation and significantly decreased late β-cell apoptosis after prolonged culture in G5 or G30 vs. G10. It did not, however, prevent the loss of GSIS under these culture conditions. Conclusion ZnCl2 reduces mitochondrial oxidative stress and improves rat β-cell survival during culture in the presence of low and high vs. intermediate glucose concentrations without improving their acute GSIS.
Biochemical Journal | 2014
Hilton Takahashi; Laila R.B. Santos; Leticia Prates Roma; Jessica Duprez; Christophe Broca; Anne Wojtusciszyn; Jean-Christophe Jonas
The glucose stimulation of insulin secretion by pancreatic β-cells depends on increased production of metabolic coupling factors, among which changes in NADPH and ROS (reactive oxygen species) may alter the glutathione redox state (EGSH) and signal through changes in thiol oxidation. However, whether nutrients affect EGSH in β-cell subcellular compartments is unknown. Using redox-sensitive GFP2 fused to glutaredoxin 1 and its mitochondria-targeted form, we studied the acute nutrient regulation of EGSH in the cytosol/nucleus or the mitochondrial matrix of rat islet cells. These probes were mainly expressed in β-cells and reacted to low concentrations of exogenous H2O2 and menadione. Under control conditions, cytosolic/nuclear EGSH was close to -300 mV and unaffected by glucose (from 0 to 30 mM). In comparison, mitochondrial EGSH was less negative and rapidly regulated by glucose and other nutrients, ranging from -280 mV in the absence of glucose to -299 mV in 30 mM glucose. These changes were largely independent from changes in intracellular Ca(2+) concentration and in mitochondrial pH. They were unaffected by overexpression of SOD2 (superoxide dismutase 2) and mitochondria-targeted catalase, but were inversely correlated with changes in NAD(P)H autofluorescence, suggesting that they indirectly resulted from increased NADPH availability rather than from changes in ROS concentration. Interestingly, the opposite regulation of mitochondrial EGSH and NAD(P)H autofluorescence by glucose was also observed in human islets isolated from two donors. In conclusion, the present study demonstrates that glucose and other nutrients acutely reduce mitochondrial, but not cytosolic/nuclear, EGSH in pancreatic β-cells under control conditions.
Biochemical and Biophysical Research Communications | 2011
Jessica Duprez; Jean-Christophe Jonas
In vitro, survival and function of rat pancreatic β-cells are optimally preserved in the presence of 10 mmol/l glucose (G10) and markedly altered by prolonged culture at either 2 mmol/l glucose (G2) or 30 mmol/l glucose (G30). The increase in islet cell apoptosis in G2 and G30 vs. G10 is preceded by parallel increases in the mRNA levels of the integrated stress response (ISR) gene activating transcription factor 3 (Atf3) and its putative target and proapoptotic gene growth arrest- and DNA damage-inducible gene 153 (Gadd153/Chop). In this study, we used islets from Atf3 knockout (Atf3(-/-)) mice to test the role of ATF3 in the stimulation of islet cell apoptosis under conditions associated with ISR activation. The glucose sensitivity of Atf3(-/-) and WT islets for the stimulation of insulin secretion and Xbp1 mRNA splicing during 18h culture was similar, demonstrating that glucose metabolism was unaffected by Atf3 deletion. However, the stimulation of islet cell apoptosis by the SERCA pump inhibitor thapsigargin was slightly but significantly reduced in Atf3(-/-) vs. WT islets despite similar level of expression of Gadd153 and Gadd34 mRNA. Also, the stimulation of islet cell apoptosis by 7 days of culture in G2 was slightly but significantly reduced in Atf3(-/-) vs. WT islets, and this effect was accompanied by a significant reduction in Gadd153 mRNA expression. In conclusion, the increase in Atf3 gene expression induced by thapsigargin and low glucose concentrations slightly contributes to the stimulation of islet cell apoptosis under these culture conditions.
American Journal of Physiology-endocrinology and Metabolism | 2015
Leticia Prates Roma; Jessica Duprez; X Jean-Christophe Jonas
In rat pancreatic islets, β-cell gene expression, survival, and subsequent acute glucose stimulation of insulin secretion (GSIS) are optimally preserved by prolonged culture at 10 mM glucose (G10) and markedly altered by culture at G5 or G30. Here, we tested whether pharmacological glucokinase (GK) activation prevents these alterations during culture or improves GSIS after culture. Rat pancreatic islets were cultured 1-7 days at G5, G10, or G30 with or without 3 μM of the GK activator Ro 28-0450 (Ro). After culture, β-cell apoptosis and islet gene mRNA levels were measured, and the acute glucose-induced increase in NAD(P)H autofluorescence, intracellular calcium concentration, and insulin secretion were tested in the absence or presence of Ro. Prolonged culture of rat islets at G5 or G30 instead of G10 triggered β-cell apoptosis and reduced their glucose responsiveness. Addition of Ro during culture differently affected β-cell survival and glucose responsiveness depending on the glucose concentration during culture: it was beneficial to β-cell survival and function at G5, detrimental at G10, and ineffective at G30. In contrast, acute GK activation with Ro increased the glucose sensitivity of islets cultured at G10 but failed at restoring β-cell glucose responsiveness after culture at G5 or G30. We conclude that pharmacological GK activation prevents the alteration of β-cell survival and function by long-term culture at G5 but mimics glucotoxicity when added to G10. The complex effects of glucose on the β-cell phenotype result from changes in glucose metabolism and not from an effect of glucose per se.
Diabetologia | 2012
Leticia Prates Roma; Séverine Pascal; Jessica Duprez; Jean-Christophe Jonas
Diabetes & Metabolism | 2013
Hilton Takahashi; L. Prates Roma; Jessica Duprez; J.C. Jonas
Diabetes & Metabolism | 2012
Jessica Duprez; L. Prates Roma; A.F. Close; J.C. Jonas