Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiram Levy is active.

Publication


Featured researches published by Hiram Levy.


Global Biogeochemical Cycles | 1995

Nitrogen fixation: Anthropogenic enhancement‐environmental response

James N. Galloway; William H. Schlesinger; Hiram Levy; Anthony F. Michaels; Jerald L. Schnoor

In the absence of human activities, biotic fixation is the primary source of reactive N, providing about 90–130 Tg N yr−1 (Tg = 1012 g) on the continents. Human activities have resulted in the fixation of an additional ≈140 Tg N yr−1 by energy production (≈20 Tg N yr−1 ), fertilizer production (≈80 Tg N yr−1), and cultivation of crops (e.g., legumes, rice) (≈40 Tg N yr−1 ). We can only account for part of this anthropogenic N. N2O is accumulating in the atmosphere at a rate of 3 Tg N yr−1. Coastal oceans receive another 41 Tg N yr−1 via rivers, much of which is buried or denitrified. Open oceans receive 18 Tg N yr−1 by atmospheric deposition, which is incorporated into oceanic N pools (e.g., NO3−, N2). The remaining 80 Tg N yr−1 are either retained on continents in groundwater, soils, or vegetation or denitrified to N2. Field studies and calculations indicate that uncertainties about the size of each sink can account for the remaining anthropogenic N. Thus although anthropogenic N is clearly accumulating on continents, we do not know rates of individual processes. We predict the anthropogenic N-fixation rate will increase by about 60% by the year 2020, primarily due to increased fertilizer use and fossil-fuel combustion. About two-thirds of the increase will occur in Asia, which by 2020 will account for over half of the global anthropogenic N fixation.


Science | 1994

Growth of Continental-Scale Metro-Agro-Plexes, Regional Ozone Pollution, and World Food Production

W. L. Chameides; Prasad S. Kasibhatla; J. Yienger; Hiram Levy

Three regions of the northern mid-latitudes, the continental-scale metro-agro-plexes, presently dominate global industrial and agricultural productivity. Although these regions cover only 23 percent of the Earths continents, they account for most of the worlds commercial energy consumption, fertilizer use, food-crop production, and food exports. They also account for more than half of the worlds atmospheric nitrogen oxide (NOx,) emissions and, as a result, are prone to ground-level ozone (O3) pollution during the summer months. On the basis of a global simulation of atmospheric reactive nitrogen compounds, it is estimated that about 10 to 35 percent of the worlds grain production may occur in parts of these regions where ozone pollution may reduce crop yields. Exposure to yield-reducing ozone pollution may triple by 2025 if rising anthropogenic NOx emissions are not abated.


Atmospheric Environment | 1994

Surface ozone measurements from a global network

Samuel J. Oltmans; Hiram Levy

Abstract From a network of sites, primarily in the Atlantic and Pacific Ocean regions, measurements of the surface ozone concentration yield information on the seasonal, synoptic, and diurnal patterns. These sites, generally removed from the effects of local pollution sources, show characteristics that typify broad geographical regions. At Barrow, AK; Mauna Loa, HI; American Samoa; and South Pole, data records of 15–20 years show trends that in all cases are a function of season. This dependence on season is important in understanding the causes of the long-term changes. At Barrow, the summer (July, August, September) increase of 1.7% per year is probably indicative of photochemical production. At South Pole, on the other hand, the summer (December, January, February) decrease is related to photochemical losses and enhanced transport from the coast of Antarctica. At all the sites there is a pronounced seasonal variation. In the Southern Hemisphere (SH), all locations which run from 14 to 90°S show a winter (July– August) maximum and summer minimum. In the Northern Hemisphere (NH) most of the sites show a spring maximum and autumn minimum. At Barrow (70°N) and Barbados (14°), however, the maxima occur during the winter, but for very different reasons. At many of the sites, the transport changes associated with synoptic scale weather patterns dominate the day-to-day variability. This is particularly pronounced at Bermuda and the more tropical sites. In the tropics, there is a very regular diurnal surface ozone cycle with minimum values in the afternoon maxima early in the morning. This appears to result from photochemical destruction during the day in regions with very low concentrations of nitrogen oxides. At Niwot Ridge, CO, and Mace Head, Ireland, there is clear evidence of photochemical ozone production in the summer during transport from known regional pollution sources.


Journal of Geophysical Research | 1997

Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems

Elisabeth A. Holland; Bobby H. Braswell; Jean-Francois Lamarque; Alan R. Townsend; James Sulzman; Jean-François Müller; Frank Dentener; Guy P. Brasseur; Hiram Levy; Joyce E. Penner; Geert Jan Roelofs

Widespread mobilization of nitrogen into the atmosphere from industry, agriculture, and biomass burning and its subsequent deposition have the potential to alleviate nitrogen limitation of productivity in terrestrial ecosystems, and may contribute to enhanced terrestrial carbon uptake. To evaluate the importance of the spatial distribution of nitrogen deposition for carbon uptake and to better quantify its magnitude and uncertainty NO y -N deposition fields from five different three-dimensional chemical models, GCTM, GRANTOUR, IMAGES, MOGUNTIA, and ECHAM were used to drive NDEP, a perturbation model of terrestrial carbon uptake. Differences in atmospheric sources of NO x -N, transport, resolution, and representation of chemistry, contribute to the distinct spatial patterns of nitrogen deposition on the global land surface; these differences lead to distinct patterns of carbon uptake that vary between 0.7 and 1.3 Gt C yr -1 globally. Less than 10% of the nitrogen was deposited on forests which were most able to respond with increased carbon storage because of the wide C:N ratio of wood as well as its long lifetime. Addition of NH x -N to NO y -N deposition, increased global terrestrial carbon storage to between 1.5 and 2.0 Gt C yr -1 , while the missing terrestrial sink is quite similar in magnitude. Thus global air pollution appears to be an important influence on the global carbon cycle. If N fertilization of the terrestrial biosphere accounts for the missing C sink or a substantial portion of it, we would expect significant reductions in its magnitude over the next century as terrestrial ecosystems become N saturated and O 3 pollution expands.


Journal of Geophysical Research | 2000

Impacts of biomass burning on tropospheric CO, NOx, and O3

Meredith Galanter; Hiram Levy; Gregory R. Carmichael

This study utilizes the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory three-dimensional global chemical transport model to quantify the impacts of biomass burning on tropospheric concentrations of carbon monoxide (CO), nitrogen oxides (NOx), and ozone (O3). We construct updated global sources that emit 748 Tg CO/yr and 7.8 Tg N/yr in the surface layer. Both sources include six types of biomass: forest, savanna, fuelwood, agricultural residues, domestic crop residues (burned in the home for cooking and/or heating), and dried animal waste. Timing for the burning of forest, savanna, and agricultural residues is based upon regional cultural use of fire, vegetation type, local climate, and information gathered from satellite observations, while emissions from the burning of fuelwood, domestic crop residues, and dried animal waste are constant throughout the year. Based on agreement with observations, particularly of CO, we conclude that the collective uncertainty in our biomass burning sources is much less than the factor of two suggested by previous estimates of biomass burned in the tropics annually. Overall, biomass burning is a major source of CO and NOx in the northern high latitudes during the summer and fall and in the tropics throughout most of the year. While it contributes more than 50% of both the NOx and CO in the boundary layer over major source regions, it has a much larger global impact on the CO distribution in comparison to either NOx or O3, contributing 15 to 30% of the entire tropospheric CO background. The only significant biomass burning contribution to NOx at 500 mbar, due to the short lifetime of NOx in the lower troposphere, is a plume occurring July through October in the Southern Hemisphere subtropical free troposphere, stretching from South America to the western Pacific. The largest impacts on O3 are limited to those regions where NOx impacts are large as well. Near the surface, biomass burning indirectly contributes less than half of the total O3 concentrations over major tropical source regions, up to 15% throughout the year in the tropics, and 10 to 20% throughout the Southern Hemisphere during September through November. At 500 mbar, the largest contribution to O3 (20–30%) is correlated with the NOx plume during July through November. Biomass burning contributes less than 15% of either NOx or O3 in the upper troposphere.


Journal of Geophysical Research | 2000

Global distribution of carbon monoxide

Tracey Holloway; Hiram Levy; Prasad S. Kasibhatla

This study explores the evolution and distribution of carbon monoxide (CO) using the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory three-dimensional global chemical transport model (GFDL GCTM). The work aims to gain an improved understanding of the global carbon monoxide budget, specifically focusing on the contribution of each of the four source terms to the seasonal variability of CO. The sum of all CO sources in the model is 2.5 Pg CO/yr (1 Pg = 103 Tg), including fossil fuel use (300 Tg CO/yr), biomass burning (748 Tg CO/yr), oxidation of biogenic hydrocarbons (683 Tg CO/yr), and methane oxidation (760 Tg CO/yr). The main sink for CO is destruction by the hydroxyl radical, and we assume a hydroxyl distribution based on three-dimensional monthly varying fields given by Spivakovsky et al. [1990], but we increase this field by 15% uniformly to agree with a methyl chloroform lifetime of 4.8 years [Prinn et al, 1995]. Our simulation produces a carbon monoxide field that agrees well with available measurements from the NOAA/Climate Monitoring and Diagnostics Laboratory global cooperative flask sampling network and from the Jungfraujoch observing station of the Swiss Federal Laboratories for Materials Testing and Research (EMPA) (93% of seasonal-average data points agree within ±25%) and flight data from measurement campaigns of the NASA Global Tropospheric Experiment (79% of regional-average data points agree within ±25%). For all 34 ground-based measurement sites we have calculated the percentage contribution of each CO source term to the total model-simulated distribution and examined how these contributions vary seasonally due to transport, changes in OH concentration, and seasonality of emission sources. CO from all four sources contributes to the total magnitude of CO in all regions. Seasonality, however, is usually governed by the transport and destruction by OH of CO emitted by fossil fuel and/or biomass burning. The sensitivity to the hydroxyl field varies spatially, with a 30% increase in OH yielding decreases in CO ranging from 4–23%, with lower sensitivities near emission regions where advection acts as a strong local sink. The lifetime of CO varies from 10 days over summer continental regions to well over a year at the winter poles, where we define lifetime as the turnover time in the troposphere due to reaction with OH.


Journal of Geophysical Research | 2000

The episodic nature of air pollution transport from Asia to North America

James J. Yienger; Meredith Galanter; Tracey Holloway; Mahesh J. Phadnis; Sarath K. Guttikunda; Gregory R. Carmichael; Waller J. Moxim; Hiram Levy

We employ the Geophysical Fluid Dynamics Laboratory (GFDL) global chemistry transport model (GCTM) to address the episodic nature of trans-Pacific pollution. The strongest Asian CO episodes over North America (NA), occurring most frequently between February and May, are often associated with disturbances that entrain pollution over eastern Asia and amplify over the western Pacific Ocean. Using 55 ppb of Asian CO as a criterion for major events, we find that during a typical year three to five Asian pollution events analogous to those observed by Jaffe et al. [1999] are expected in the boundary layer all along the U.S. West Coast between February and May. In contrast to CO, Asia currently has a small impact on the magnitude and variability of background ozone arriving over NA from the west. Direct and indirect Asian contributions to episodic O3 events over the western United States are generally in the 3–10 ppbv range. The two largest total O3 events (>60 ppbv), while having trajectories which pass over Asia, show negligible impact from Asian emissions. However, this may change. A future emission scenario in which Asian NOx emissions increase by a factor of 4 from those in 1990 produces late spring ozone episodes at the surface of California with Asian contributions reaching 40 ppb. Such episodic contributions are certain to exacerbate local NA pollution events, especially in elevated areas more frequently exposed to free tropospheric and more heavily Asian-influenced air.


Journal of Geophysical Research | 1996

Simulated global tropospheric PAN: Its transport and impact on NO x

W. J. Moxim; Hiram Levy; Prasad S. Kasibhatla

Using the 11-level Geophysical Fluid Dynamics Laboratory (GFDL) global chemical transport model (GCTM) with all known sources of tropospheric NOx, we simulate the global tropospheric distribution of peroxyacetyl nitrate (PAN) and quantify its impact on tropospheric NOx. The models global distribution of PAN is in reasonable agreement with most available observations. In the atmospheric boundary layer, PAN is concentrated over the continental sites of NOx emissions, primarily the midlatitudes in the northern hemisphere and the subtropics in the southern hemisphere. PAN is distributed relatively zonally throughout the free troposphere of the northern hemisphere, with the maximum levels found in the coldest regions, while in the southern hemisphere the maximum PAN levels are found in an equator to 30°S belt stretching from South America to Australia. Overall, the simulated three-dimensional fields of seasonal PAN are a result of the interaction of the type of transport meteorology (convective or synoptic scale storms) occurring in the PAN formation regions and PANs temperature-dependent lifetime. We find the impact of PAN chemistry on NOx to be rather subtle. The magnitude and the seasonal cycle of the global tropospheric integral of NOx, which has its maximum in January and the formation of HNO3 as its dominant loss path, are barely affected by the inclusion of PAN chemistry, however PAN, as a result of its temperature sensitivity and transport, regionally provides an efficient mechanism for redistributing NOx far from its source areas. With the inclusion of PAN chemistry, monthly mean NOx concentrations increase by up to a factor of 5 in the remote lower troposphere and show a spring maximum over areas of the North Atlantic and North Pacific Oceans. In contrast, PAN has only a minor impact in the upper half of the troposphere (±10%). Examining local time series of NOx and PAN, the monthly mean mixing ratios in remote regions are shown to be composed of numerous short-term (1–2 days) large magnitude events. These episodes are large enough to potentially result in ozone production even when the monthly mean NOx values are in the ozone destruction range. While both the direct transport of NOx and its indirect transport as PAN contribute to the elevated NOx episodes over the remote extratropical oceans, events over the remote subtropical oceans are dominated by midtropospheric PAN that sinks anticyclonically equatorward and decomposes to NOx in the warmer air.


Science | 2007

The Southern Ocean Biological Response to Aeolian Iron Deposition

Nicolas Cassar; Michael L. Bender; Bruce Barnett; Song-Miao Fan; Walter J. Moxim; Hiram Levy; Bronte Tilbrook

Biogeochemical rate processes in the Southern Ocean have an important impact on the global environment. Here, we summarize an extensive set of published and new data that establishes the pattern of gross primary production and net community production over large areas of the Southern Ocean. We compare these rates with model estimates of dissolved iron that is added to surface waters by aerosols. This comparison shows that net community production, which is comparable to export production, is proportional to modeled input of soluble iron in aerosols. Our results strengthen the evidence that the addition of aerosol iron fertilizes export production in the Southern Ocean. The data also show that aerosol iron input particularly enhances gross primary production over the large area of the Southern Ocean downwind of dry continental areas.


Geophysical Research Letters | 1998

Trends of ozone in the troposphere

Samuel J. Oltmans; A. S. Lefohn; H. E. Scheel; Joyce M. Harris; Hiram Levy; Ian E. Galbally; Ernst-G. Brunke; C. P. Meyer; J. A. Lathrop; Bryan J. Johnson; D. S. Shadwick; E. Cuevas; Francis J. Schmidlin; David W. Tarasick; H. Claude; J. B. Kerr; Osamu Uchino; Volker A. Mohnen

Using a set of selected surface ozone (nine stations) and ozone vertical profile measurements (from six stations), we have documented changes in tropospheric ozone at a number of locations. From two stations at high northern hemisphere (NH) latitudes there has been a significant decline in ozone amounts throughout the troposphere since the early 1980s. At midlatitudes of the NH where data are the most abundant, on the other hand, important regional differences prevail. The two stations in the eastern United States show that changes in ozone concentrations since the early 1970s have been relatively small. At the two sites in Europe, however, ozone amounts increased rapidly into the mid-1980s, but have increased less rapidly (or in some places not at all) since then. Increases at the Japanese ozonesonde station have been largest in the lower troposphere, but have slowed in the recent decade. The tropics are sparsely sampled but do not show significant changes. Small increases are suggested at southern hemisphere (SH) midlatitudes by the two surface data records. In Antarctica large declines in the ozone concentration are noted in the South Pole data, and like those at high latitudes of the NH, seem to parallel the large decreases in the stratosphere.

Collaboration


Dive into the Hiram Levy's collaboration.

Top Co-Authors

Avatar

Larry W. Horowitz

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Walter J. Moxim

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel J. Oltmans

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. D. Mahlman

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar

John T. Merrill

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

M. Daniel Schwarzkopf

Geophysical Fluid Dynamics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge